Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
bc2e26ee
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bc2e26ee
编写于
9月 28, 2017
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine comments and clean code in marigin_rank_loss_op
上级
dc186af7
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
42 addition
and
30 deletion
+42
-30
paddle/operators/margin_rank_loss_op.cc
paddle/operators/margin_rank_loss_op.cc
+38
-18
paddle/operators/margin_rank_loss_op.h
paddle/operators/margin_rank_loss_op.h
+4
-12
未找到文件。
paddle/operators/margin_rank_loss_op.cc
浏览文件 @
bc2e26ee
...
...
@@ -25,47 +25,67 @@ class MarginRankLossOp : public framework::OperatorWithKernel {
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
// input check
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Label"
),
"Input(Label) shouldn't be null"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X1"
),
"Input(X1) shouldn't be null"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X2"
),
"Input(X2) shouldn't be null"
);
"Input(Label) shouldn't be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X1"
),
"Input(X1) shouldn't be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X2"
),
"Input(X2) shouldn't be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Out"
),
"Output(X2) shouldn't be null."
);
auto
label_dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
)
->
dims
();
auto
x1_dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X1"
)
->
dims
();
auto
x2_dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X2"
)
->
dims
();
PADDLE_ENFORCE
((
label_dims
==
x1_dims
)
&&
(
x1_dims
==
x2_dims
)
&&
(
label_dims
.
size
()
==
2
)
&&
(
label_dims
[
1
]
==
1
),
"All inputs must be vector with the same size"
);
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Activated"
)
->
Resize
(
label_dims
);
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
)
->
Resize
(
label_dims
);
"All inputs must be vector with the same size."
);
auto
act_t
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Activated"
);
auto
out_t
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
if
(
act_t
)
{
act_t
->
Resize
(
label_dims
);
}
if
(
out_t
)
{
out_t
->
Resize
(
label_dims
);
}
}
};
template
<
typename
AttrType
>
template
<
typename
T
>
class
MarginRankLossOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
MarginRankLossOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X1"
,
"The first variable to be ranked, row vector."
);
AddInput
(
"X2"
,
"The second variable to be ranked, row vector."
);
AddInput
(
"X1"
,
"(2-D tensor with shape [batch_size x 1]) In pairwise ranking, "
"X1 is the score for one item to be ranked."
);
AddInput
(
"X2"
,
"(2-D tensor with shape [batch_size x 1]) In pairwise ranking, "
"X2 is the score for another item to be ranked."
);
AddInput
(
"Label"
,
"The label indicating X1 ranked higher than X2 "
"or not, row vector."
);
AddAttr
<
AttrType
>
(
"margin"
,
"Margin for MarginRankLossOp, scalar."
)
.
SetDefault
(
0
);
"(2-D tensor with shape [batch_size x 1]) "
"The label indicating X1 ranked higher than X2 or not, "
"can only be +1 or -1."
);
AddAttr
<
T
>
(
"margin"
,
"(scalar, default 0) Margin for MarginRankLossOp."
)
.
SetDefault
(
static_cast
<
T
>
(
0
));
AddOutput
(
"Activated"
,
"
Intermediate tensor to indicate whether each element of
"
"Output(Out) is activated."
)
"
(2-D tensor with shape [batch_size x 1]) Intermediate tensor
"
"
to indicate whether each element of
Output(Out) is activated."
)
.
AsIntermediate
();
AddOutput
(
"Out"
,
"The output loss of MarginRankLoss operator"
);
AddOutput
(
"Out"
,
"(2-D tensor with shape [batch_size x 1])"
"The output loss of MarginRankLoss operator"
);
AddComment
(
R"DOC(
MarginRankLoss operator measures the loss given a pair of input {`X1`, `X2`}
and the `Label` with attribute `margin`, where `Label = 1` indicating X1 is
and the `Label` with attribute `margin`, where `Label =
+
1` indicating X1 is
ranked higher than `X2`, otherwise `Label = -1`. The loss turns out
loss(X1, X2, Label) = max(0, -Label * (X1 - X2) + margin)
For batch input, `X1`, `X2` and `Label` all have the same size batch_size x 1.
The attribute `margin` involved here helps make the predictions more robust.
Only when the difference between `X1` and `X2` is greater than `margin`, it is
possible for these two items contribute to the final loss.
For batch input with size `batch_size`, `X1`, `X2` and `Label`
all have the same shape [batch_size x 1].
)DOC"
);
}
...
...
paddle/operators/margin_rank_loss_op.h
浏览文件 @
bc2e26ee
...
...
@@ -23,26 +23,18 @@ namespace operators {
template
<
typename
T
>
struct
ReLU
{
HOSTDEVICE
T
operator
()(
const
T
&
val
)
const
{
if
(
val
<
0
)
{
return
static_cast
<
T
>
(
0
);
}
else
{
return
val
;
}
return
val
>
0
?
val
:
static_cast
<
T
>
(
0
);
}
};
template
<
typename
T
>
struct
Heaviside
{
HOSTDEVICE
T
operator
()(
const
T
&
val
)
const
{
if
(
val
>
0
)
{
return
static_cast
<
T
>
(
1
);
}
else
{
return
static_cast
<
T
>
(
0
);
}
return
static_cast
<
T
>
(
val
>
0
?
1
:
0
);
}
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
template
<
typename
Place
,
typename
T
>
class
MarginRankLossKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
...
...
@@ -56,7 +48,7 @@ class MarginRankLossKernel : public framework::OpKernel {
out_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
act_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
margin
=
static_cast
<
T
>
(
ctx
.
Attr
<
AttrType
>
(
"margin"
));
auto
margin
=
static_cast
<
T
>
(
ctx
.
Attr
<
T
>
(
"margin"
));
auto
out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out_t
);
auto
act
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
act_t
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录