fmha_ref.h 24.3 KB
Newer Older
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13 14 15 16 17
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/operators/dropout_impl.cu.h"
18
#include "paddle/fluid/operators/fused/fused_softmax_mask.cu.h"
19
#include "paddle/phi/kernels/funcs/broadcast_function.h"
20
#include "paddle/phi/kernels/funcs/concat_and_split_functor.h"
W
WangXi 已提交
21
#include "paddle/phi/kernels/funcs/elementwise_base.h"
22
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
W
WangXi 已提交
23
#include "paddle/phi/kernels/funcs/functors.h"
24
#include "paddle/phi/kernels/funcs/transpose_function.cu.h"
25
#include "paddle/phi/kernels/gpudnn/softmax_gpudnn.h"
26 27 28 29

namespace paddle {
namespace operators {

30
using Tensor = phi::DenseTensor;
31 32 33 34 35 36 37 38 39 40 41 42

class AttnDropoutParam {
 public:
  AttnDropoutParam() {
    is_test_ = false;
    dropout_implementation_ = "downgrade_in_infer";
    dropout_prob_ = 0.5;
    is_upscale_in_train_ = false;
    is_fix_seed_ = false;
    seed_val_ = 0;
    seed_ = nullptr;
  }
43 44 45 46 47 48
  AttnDropoutParam(bool is_test,
                   const std::string dropout_implementation,
                   float dropout_prob,
                   bool is_upscale_in_train,
                   bool is_fix_seed,
                   int seed_val,
49
                   const phi::DenseTensor* seed) {
50 51 52 53 54 55 56 57 58 59 60 61 62 63
    is_test_ = is_test;
    dropout_implementation_ = dropout_implementation;
    dropout_prob_ = dropout_prob;
    is_upscale_in_train_ = is_upscale_in_train;
    is_fix_seed_ = is_fix_seed;
    seed_val_ = seed_val;
    seed_ = seed;
  }
  bool is_test_;
  std::string dropout_implementation_;
  float dropout_prob_;
  bool is_upscale_in_train_;
  bool is_fix_seed_;
  int seed_val_;
64
  const phi::DenseTensor* seed_;
65 66 67 68 69
};

template <typename T>
class FMHARef {
 public:
L
Leo Chen 已提交
70
  FMHARef(const phi::GPUContext& dev_ctx,
71 72 73 74
          int64_t batch_size,
          int64_t seq_len,
          int64_t num_head,
          int64_t head_dim,
75 76 77 78 79 80 81 82 83 84
          AttnDropoutParam param)
      : dev_ctx_(dev_ctx),
        batch_size_(batch_size),
        seq_len_(seq_len),
        num_head_(num_head),
        head_dim_(head_dim),
        dropout_param_(param) {}

  ~FMHARef() {}

85 86 87 88 89 90 91 92 93 94 95 96
  void ComputeForward(const phi::DenseTensor& qkv_input_tensor,
                      const phi::DenseTensor* cache_kv_tensor,
                      const phi::DenseTensor* src_mask_tensor,
                      phi::DenseTensor* transpose_2_out_tensor,
                      phi::DenseTensor* cache_kv_out_tensor,
                      phi::DenseTensor* qk_out_tensor,
                      phi::DenseTensor* src_mask_out_tensor,
                      phi::DenseTensor* softmax_out_tensor,
                      phi::DenseTensor* dropout_mask_out_tensor,
                      phi::DenseTensor* dropout_out_tensor,
                      phi::DenseTensor* qktv_out_tensor,
                      phi::DenseTensor* fmha_out_tensor) {
97
    // input shape: [bs, seq_len, 3, num_head, head_dim]
98
    // transpose with perm [2, 0, 3, 1, 4],
99 100
    // output_shape: [3, bs, num_head, seq_len, head_dim]
    std::vector<int> perm_1 = {2, 0, 3, 1, 4};
101
    phi::funcs::TransposeGPUKernelDriver<T>(
102
        dev_ctx_, qkv_input_tensor, perm_1, transpose_2_out_tensor);
103 104 105 106 107 108 109
    T* qkv_data = transpose_2_out_tensor->data<T>();
    T* qk_out_data = qk_out_tensor->data<T>();
    T* qktv_out_data = qktv_out_tensor->data<T>();
    T* softmax_out_data = softmax_out_tensor->data<T>();
    T* dropout_out_data = dropout_out_tensor->data<T>();
    T* fmha_out_data = fmha_out_tensor->data<T>();

110 111 112 113 114 115 116 117 118 119 120
    auto out_seq_len = seq_len_;
    if (cache_kv_tensor) {
      // kv [2, bs, num_head, seq_len, head_dim]
      auto kv_tensor = transpose_2_out_tensor->Slice(1, 3);
      phi::funcs::ConcatFunctor<phi::GPUContext, T> concat;
      // out [2, bs, num_head, cache_seq_len + seq_len, head_dim]
      concat(dev_ctx_, {*cache_kv_tensor, kv_tensor}, 3, cache_kv_out_tensor);
      out_seq_len = cache_kv_out_tensor->dims()[3];
    }

    int64_t q_size = batch_size_ * seq_len_ * num_head_ * head_dim_;
121
    T* q_ptr = qkv_data;
122 123 124 125 126 127 128 129 130 131 132 133
    T* k_ptr = nullptr;
    T* v_ptr = nullptr;

    if (cache_kv_tensor) {
      int64_t k_size = cache_kv_out_tensor->numel() / 2;
      k_ptr = cache_kv_out_tensor->data<T>();
      v_ptr = k_ptr + k_size;
    } else {
      int64_t k_size = q_size;
      k_ptr = q_ptr + q_size;
      v_ptr = k_ptr + k_size;
    }
134

W
WangXi 已提交
135 136 137 138 139 140
    {
      // NOTE(wangxi): We scale Q with 1/sqrt(Dh) before QK^T, because for
      // float16 calculation, INF may appear in QK^T if we do not scale before.
      float alpha = 1.0 / sqrt(head_dim_);
      auto q_tensor = transpose_2_out_tensor->Slice(0, 1);
      auto functor = phi::funcs::ScaleFunctor<T>(alpha);
141 142
      std::vector<const phi::DenseTensor*> ins = {&q_tensor};
      std::vector<phi::DenseTensor*> outs = {&q_tensor};
143
      phi::funcs::ElementwiseKernel<T>(dev_ctx_, ins, &outs, functor);
W
WangXi 已提交
144 145
    }

146 147 148
    // q*k^t, batched_gemm
    CBLAS_TRANSPOSE transA = CblasNoTrans;
    CBLAS_TRANSPOSE transB = CblasTrans;
L
Leo Chen 已提交
149
    auto blas = phi::funcs::GetBlas<phi::GPUContext, T>(dev_ctx_);
150 151
    int gemm_batch_size = batch_size_ * num_head_;
    int gemm_m = seq_len_;
152
    int gemm_n = out_seq_len;
153
    int gemm_k = head_dim_;
W
WangXi 已提交
154
    T alpha = static_cast<T>(1.0);
155
    T beta = static_cast<T>(0.0);
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    int64_t stride_a = gemm_m * gemm_k;
    int64_t stride_b = gemm_k * gemm_n;
    blas.BatchedGEMM(transA,
                     transB,
                     gemm_m,
                     gemm_n,
                     gemm_k,
                     alpha,
                     q_ptr,
                     k_ptr,
                     beta,
                     qk_out_data,
                     gemm_batch_size,
                     stride_a,
                     stride_b);
    int softmax_axis = -1;
    if (src_mask_tensor != nullptr) {
      if (src_mask_out_tensor == nullptr && seq_len_ == out_seq_len) {
        LaunchFusedSoftmaxMaskKernel<T>(qk_out_data,
                                        src_mask_tensor->data<T>(),
                                        softmax_out_data,
                                        batch_size_,
                                        num_head_,
                                        seq_len_,
                                        dev_ctx_.stream());
      } else {
        std::vector<const phi::DenseTensor*> ins;
        std::vector<phi::DenseTensor*> outs;
        ins.emplace_back(qk_out_tensor);
        ins.emplace_back(src_mask_tensor);
        outs.emplace_back(src_mask_out_tensor);
        int elewise_add_axis = -1;
        phi::funcs::BroadcastKernel<phi::ElementwiseType::kBinary, T, T>(
            dev_ctx_,
            ins,
            &outs,
            elewise_add_axis,
            phi::funcs::AddFunctor<T>());

        phi::SoftmaxForwardCUDAKernelDriver<T>(
            dev_ctx_, *src_mask_out_tensor, softmax_axis, softmax_out_tensor);
      }
    } else {
      phi::SoftmaxForwardCUDAKernelDriver<T>(
          dev_ctx_, *qk_out_tensor, softmax_axis, softmax_out_tensor);
    }

    transB = CblasNoTrans;
    gemm_m = seq_len_;
    gemm_n = head_dim_;
    gemm_k = out_seq_len;
    alpha = static_cast<T>(1.0);
    stride_a = gemm_m * gemm_k;
    stride_b = gemm_k * gemm_n;

    if (dropout_param_.dropout_prob_) {
      DropoutFwGPUKernelDriver<T>(
          static_cast<const phi::GPUContext&>(dev_ctx_),
          dropout_param_.is_test_,
          dropout_param_.dropout_prob_,
          dropout_param_.is_upscale_in_train_,
          dropout_param_.is_fix_seed_,
          dropout_param_.seed_val_,
          static_cast<const phi::DenseTensor&>(*softmax_out_tensor),
          dropout_param_.seed_,
          dropout_mask_out_tensor,
          dropout_out_tensor,
          false);
      blas.BatchedGEMM(transA,
                       transB,
                       gemm_m,
                       gemm_n,
                       gemm_k,
                       alpha,
                       dropout_out_data,
                       v_ptr,
                       beta,
                       qktv_out_data,
                       gemm_batch_size,
                       stride_a,
                       stride_b);
    } else {
      // softmax_out * v, batched_gemm
      // output shape: [batch_size, num_heads, seq_len, head_dim]
      blas.BatchedGEMM(transA,
                       transB,
                       gemm_m,
                       gemm_n,
                       gemm_k,
                       alpha,
                       softmax_out_data,
                       v_ptr,
                       beta,
                       qktv_out_data,
                       gemm_batch_size,
                       stride_a,
                       stride_b);
    }
    // transpose: [0, 2, 1, 3]
    // output shape: [batch_size, seq_len, num_heads, head_dim]
    std::vector<int> perm_3 = {0, 2, 1, 3};
257
    phi::funcs::TransposeGPUKernelDriver<T>(
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
        dev_ctx_, *qktv_out_tensor, perm_3, fmha_out_tensor);
  }

  void ComputeForwardWithoutTranspose(const phi::DenseTensor& qkv_input_tensor,
                                      const phi::DenseTensor* cache_kv_tensor,
                                      const phi::DenseTensor* src_mask_tensor,
                                      phi::DenseTensor* q_transpose_out_tensor,
                                      phi::DenseTensor* kv_transpose_out_tensor,
                                      phi::DenseTensor* cache_kv_out_tensor,
                                      phi::DenseTensor* qk_out_tensor,
                                      phi::DenseTensor* src_mask_out_tensor,
                                      phi::DenseTensor* softmax_out_tensor,
                                      phi::DenseTensor* dropout_mask_out_tensor,
                                      phi::DenseTensor* dropout_out_tensor,
                                      phi::DenseTensor* qktv_out_tensor,
                                      phi::DenseTensor* fmha_out_tensor) {
    // input shape: [bs, seq_len, 3, num_head, head_dim]
    // transpose with perm [2, 0, 3, 1, 4],
    // output_shape: [3, bs, num_head, seq_len, head_dim]
    T* qk_out_data = qk_out_tensor->data<T>();
    T* qktv_out_data = qktv_out_tensor->data<T>();
    T* softmax_out_data = softmax_out_tensor->data<T>();
    T* dropout_out_data = dropout_out_tensor->data<T>();
    T* fmha_out_data = fmha_out_tensor->data<T>();

    auto out_seq_len = seq_len_;
    if (cache_kv_tensor) {
      // kv [2, bs, num_head, seq_len, head_dim]
      phi::funcs::ConcatFunctor<phi::GPUContext, T> concat;
      // out [2, bs, num_head, cache_seq_len + seq_len, head_dim]
      concat(dev_ctx_,
             {*cache_kv_tensor, *kv_transpose_out_tensor},
             3,
             cache_kv_out_tensor);
      out_seq_len = cache_kv_out_tensor->dims()[3];
    }

    int64_t q_size = batch_size_ * seq_len_ * num_head_ * head_dim_;
    T* q_ptr = q_transpose_out_tensor->data<T>();
    T* k_ptr = nullptr;
    T* v_ptr = nullptr;

    if (cache_kv_tensor) {
      int64_t k_size = cache_kv_out_tensor->numel() / 2;
      k_ptr = cache_kv_out_tensor->data<T>();
      v_ptr = k_ptr + k_size;
    } else {
      int64_t k_size = q_size;
      k_ptr = kv_transpose_out_tensor->data<T>();
      v_ptr = k_ptr + k_size;
    }

    {
      // NOTE(wangxi): We scale Q with 1/sqrt(Dh) before QK^T, because for
      // float16 calculation, INF may appear in QK^T if we do not scale before.
      float alpha = 1.0 / sqrt(head_dim_);
      auto functor = phi::funcs::ScaleFunctor<T>(alpha);
      std::vector<const phi::DenseTensor*> ins = {q_transpose_out_tensor};
      std::vector<phi::DenseTensor*> outs = {q_transpose_out_tensor};
      phi::funcs::ElementwiseKernel<T>(dev_ctx_, ins, &outs, functor);
    }

    // q*k^t, batched_gemm
    CBLAS_TRANSPOSE transA = CblasNoTrans;
    CBLAS_TRANSPOSE transB = CblasTrans;
    auto blas = phi::funcs::GetBlas<phi::GPUContext, T>(dev_ctx_);
    int gemm_batch_size = batch_size_ * num_head_;
    int gemm_m = seq_len_;
    int gemm_n = out_seq_len;
    int gemm_k = head_dim_;
    T alpha = static_cast<T>(1.0);
    T beta = static_cast<T>(0.0);
330 331
    int64_t stride_a = gemm_m * gemm_k;
    int64_t stride_b = gemm_k * gemm_n;
332 333 334 335 336 337 338 339 340 341 342 343
    blas.BatchedGEMM(transA,
                     transB,
                     gemm_m,
                     gemm_n,
                     gemm_k,
                     alpha,
                     q_ptr,
                     k_ptr,
                     beta,
                     qk_out_data,
                     gemm_batch_size,
                     stride_a,
344 345
                     stride_b);
    int softmax_axis = -1;
346
    if (src_mask_tensor != nullptr) {
347
      if (src_mask_out_tensor == nullptr && seq_len_ == out_seq_len) {
348 349 350 351 352 353 354
        LaunchFusedSoftmaxMaskKernel<T>(qk_out_data,
                                        src_mask_tensor->data<T>(),
                                        softmax_out_data,
                                        batch_size_,
                                        num_head_,
                                        seq_len_,
                                        dev_ctx_.stream());
355
      } else {
356 357
        std::vector<const phi::DenseTensor*> ins;
        std::vector<phi::DenseTensor*> outs;
358 359 360 361
        ins.emplace_back(qk_out_tensor);
        ins.emplace_back(src_mask_tensor);
        outs.emplace_back(src_mask_out_tensor);
        int elewise_add_axis = -1;
362
        phi::funcs::BroadcastKernel<phi::ElementwiseType::kBinary, T, T>(
363 364 365 366
            dev_ctx_,
            ins,
            &outs,
            elewise_add_axis,
367
            phi::funcs::AddFunctor<T>());
368

369 370 371
        phi::SoftmaxForwardCUDAKernelDriver<T>(
            dev_ctx_, *src_mask_out_tensor, softmax_axis, softmax_out_tensor);
      }
372
    } else {
373 374
      phi::SoftmaxForwardCUDAKernelDriver<T>(
          dev_ctx_, *qk_out_tensor, softmax_axis, softmax_out_tensor);
375 376 377 378 379
    }

    transB = CblasNoTrans;
    gemm_m = seq_len_;
    gemm_n = head_dim_;
380
    gemm_k = out_seq_len;
381 382 383 384 385 386
    alpha = static_cast<T>(1.0);
    stride_a = gemm_m * gemm_k;
    stride_b = gemm_k * gemm_n;

    if (dropout_param_.dropout_prob_) {
      DropoutFwGPUKernelDriver<T>(
H
hong 已提交
387
          static_cast<const phi::GPUContext&>(dev_ctx_),
388 389 390 391
          dropout_param_.is_test_,
          dropout_param_.dropout_prob_,
          dropout_param_.is_upscale_in_train_,
          dropout_param_.is_fix_seed_,
392
          dropout_param_.seed_val_,
393
          static_cast<const phi::DenseTensor&>(*softmax_out_tensor),
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
          dropout_param_.seed_,
          dropout_mask_out_tensor,
          dropout_out_tensor,
          false);
      blas.BatchedGEMM(transA,
                       transB,
                       gemm_m,
                       gemm_n,
                       gemm_k,
                       alpha,
                       dropout_out_data,
                       v_ptr,
                       beta,
                       qktv_out_data,
                       gemm_batch_size,
                       stride_a,
                       stride_b);
411 412 413
    } else {
      // softmax_out * v, batched_gemm
      // output shape: [batch_size, num_heads, seq_len, head_dim]
414 415 416 417 418 419 420 421 422 423 424 425 426
      blas.BatchedGEMM(transA,
                       transB,
                       gemm_m,
                       gemm_n,
                       gemm_k,
                       alpha,
                       softmax_out_data,
                       v_ptr,
                       beta,
                       qktv_out_data,
                       gemm_batch_size,
                       stride_a,
                       stride_b);
427 428 429 430
    }
    // transpose: [0, 2, 1, 3]
    // output shape: [batch_size, seq_len, num_heads, head_dim]
    std::vector<int> perm_3 = {0, 2, 1, 3};
431
    phi::funcs::TransposeGPUKernelDriver<T>(
432
        dev_ctx_, *qktv_out_tensor, perm_3, fmha_out_tensor);
433 434
  }

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
  void ComputeBackward(const phi::DenseTensor& transpose_2_out_tensor,
                       const phi::DenseTensor* src_mask_tensor,
                       const phi::DenseTensor& softmax_out_tensor,
                       const phi::DenseTensor& dropout_mask_out_tensor,
                       const phi::DenseTensor& dropout_out_tensor,
                       const phi::DenseTensor& qk_out_tensor,
                       const phi::DenseTensor& src_mask_out_tensor,
                       const phi::DenseTensor& fmha_out_grad_tensor,
                       phi::DenseTensor* qktv_out_grad_tensor,
                       phi::DenseTensor* dropout_out_grad_tensor,
                       phi::DenseTensor* softmax_out_grad_tensor,
                       phi::DenseTensor* src_mask_out_grad_tensor,
                       phi::DenseTensor* qk_out_grad_tensor,
                       phi::DenseTensor* transpose_2_out_grad_tensor,
                       phi::DenseTensor* src_mask_grad_tensor,
                       phi::DenseTensor* qkv_input_grad_tensor) {
L
Leo Chen 已提交
451
    auto blas = phi::funcs::GetBlas<phi::GPUContext, T>(dev_ctx_);
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
    int q_size = batch_size_ * seq_len_ * num_head_ * head_dim_;
    int k_size = q_size;
    int softmax_axis = -1;

    T* qkv_grad_data = transpose_2_out_grad_tensor->data<T>();
    T* q_grad_ptr = qkv_grad_data;
    T* k_grad_ptr = q_grad_ptr + q_size;
    T* v_grad_ptr = k_grad_ptr + k_size;
    const T* qkv_data = transpose_2_out_tensor.data<T>();
    const T* q_ptr = qkv_data;
    const T* k_ptr = q_ptr + q_size;
    const T* v_ptr = k_ptr + k_size;

    const T* softmax_out_data = softmax_out_tensor.data<T>();
    T* softmax_out_grad_data = softmax_out_grad_tensor->data<T>();
    const T* dropout_out_data = dropout_out_tensor.data<T>();
    T* dropout_out_grad_data = dropout_out_grad_tensor->data<T>();
    T* qktv_out_grad_data = qktv_out_grad_tensor->data<T>();

    // transpose bw
    std::vector<int> perm_3 = {0, 2, 1, 3};
473
    phi::funcs::TransposeGPUKernelDriver<T>(
474
        dev_ctx_, fmha_out_grad_tensor, perm_3, qktv_out_grad_tensor);
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489

    // recall batchedgemm(nn) fw: softmax_out_data(x) * v_ptr(y) =
    // qktv_out_data(out)
    CBLAS_TRANSPOSE transA = CblasTrans;
    CBLAS_TRANSPOSE transB = CblasNoTrans;
    int gemm_batch_size = batch_size_ * num_head_;
    int gemm_m = seq_len_;
    int gemm_n = head_dim_;
    int gemm_k = seq_len_;
    T alpha = static_cast<T>(1.0);
    T beta = static_cast<T>(0.0);
    int64_t stride_a = gemm_m * gemm_k;
    int64_t stride_b = gemm_k * gemm_n;
    // bw: dy = x^t * dout
    if (dropout_param_.dropout_prob_) {
490 491 492 493 494 495 496 497 498 499 500 501 502
      blas.BatchedGEMM(transA,
                       transB,
                       gemm_m,
                       gemm_n,
                       gemm_k,
                       alpha,
                       dropout_out_data,
                       qktv_out_grad_data,
                       beta,
                       v_grad_ptr,
                       gemm_batch_size,
                       stride_a,
                       stride_b);
503
    } else {
504 505 506 507 508 509 510 511 512 513 514 515 516
      blas.BatchedGEMM(transA,
                       transB,
                       gemm_m,
                       gemm_n,
                       gemm_k,
                       alpha,
                       softmax_out_data,
                       qktv_out_grad_data,
                       beta,
                       v_grad_ptr,
                       gemm_batch_size,
                       stride_a,
                       stride_b);
517 518 519 520 521 522 523 524 525 526
    }
    // bw: dx = dout * y^t
    transA = CblasNoTrans;
    transB = CblasTrans;
    gemm_m = seq_len_;
    gemm_n = seq_len_;
    gemm_k = head_dim_;
    stride_a = gemm_m * gemm_k;
    stride_b = gemm_k * gemm_n;
    if (dropout_param_.dropout_prob_) {
527 528 529 530 531 532 533 534 535 536 537 538 539
      blas.BatchedGEMM(transA,
                       transB,
                       gemm_m,
                       gemm_n,
                       gemm_k,
                       alpha,
                       qktv_out_grad_data,
                       v_ptr,
                       beta,
                       dropout_out_grad_data,
                       gemm_batch_size,
                       stride_a,
                       stride_b);
540
    } else {
541 542 543 544 545 546 547 548 549 550 551 552 553
      blas.BatchedGEMM(transA,
                       transB,
                       gemm_m,
                       gemm_n,
                       gemm_k,
                       alpha,
                       qktv_out_grad_data,
                       v_ptr,
                       beta,
                       softmax_out_grad_data,
                       gemm_batch_size,
                       stride_a,
                       stride_b);
554 555 556 557
    }
    // dropout bw
    if (dropout_param_.dropout_prob_) {
      DropoutGradGPUKernelDriver<T>(
558 559 560 561
          static_cast<const phi::GPUContext&>(dev_ctx_),
          false,
          dropout_param_.dropout_prob_,
          dropout_param_.is_upscale_in_train_,
562
          static_cast<const phi::DenseTensor&>(*dropout_out_grad_tensor),
563 564 565
          dropout_mask_out_tensor,
          softmax_out_grad_tensor,
          false);
566 567
    }

568
    if (src_mask_tensor != nullptr) {
569 570 571 572 573
      phi::SoftmaxBackwardCUDAKernelDriver<T>(dev_ctx_,
                                              softmax_out_tensor,
                                              *softmax_out_grad_tensor,
                                              softmax_axis,
                                              src_mask_out_grad_tensor);
574 575 576 577 578 579 580
      // recall LaunchElementwiseCudaKernel fw:  src_mask_out = qk_out +
      // src_mask
      // Special case when dy is not needed and dx doesn't reduce
      if (qk_out_grad_tensor != nullptr && src_mask_grad_tensor == nullptr &&
          qk_out_tensor.dims() == src_mask_out_tensor.dims()) {
        VLOG(4) << "Special case when dy is not needed and dx doesn't "
                   "reduce";
581 582 583 584
        framework::TensorCopy(*src_mask_out_grad_tensor,
                              dev_ctx_.GetPlace(),
                              dev_ctx_,
                              qk_out_grad_tensor);
585 586 587 588 589 590 591 592
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Only used for the backward elementwise_add op when"
            "dy is not needed and dx is not reduce"));
        return;
      }

    } else {
593 594
      phi::SoftmaxBackwardCUDAKernelDriver<T>(dev_ctx_,
                                              softmax_out_tensor,
595
                                              *softmax_out_grad_tensor,
596 597
                                              softmax_axis,
                                              qk_out_grad_tensor);
598 599 600
    }

    T* qk_out_grad_data = qk_out_grad_tensor->data<T>();
W
WangXi 已提交
601 602 603
    // NOTE(wangxi): For we scale Q with 1/sqrt(Dh) in forward, so we set
    //   alpha = 1.0 in backward.
    alpha = static_cast<T>(1.0);
604 605 606 607 608 609 610 611 612
    // recall batchedgemm(nt) fw:  q_ptr * (k_ptr)^t = qk_out
    // bw: dy (seq_len * head_dim) = (dout)^t * x
    transA = CblasTrans;
    transB = CblasNoTrans;
    gemm_m = seq_len_;
    gemm_n = head_dim_;
    gemm_k = seq_len_;
    stride_a = gemm_m * gemm_k;
    stride_b = gemm_k * gemm_n;
613 614 615 616 617 618 619 620 621 622 623 624 625
    blas.BatchedGEMM(transA,
                     transB,
                     gemm_m,
                     gemm_n,
                     gemm_k,
                     alpha,
                     qk_out_grad_data,
                     q_ptr,
                     beta,
                     k_grad_ptr,
                     gemm_batch_size,
                     stride_a,
                     stride_b);
626
    // dx (seq_len * head_dim) = dout * y
W
WangXi 已提交
627
    alpha = static_cast<T>(1.0 / sqrt(head_dim_));
628 629 630 631 632 633 634
    transA = CblasNoTrans;
    transB = CblasNoTrans;
    gemm_m = seq_len_;
    gemm_n = head_dim_;
    gemm_k = seq_len_;
    stride_a = gemm_m * gemm_k;
    stride_b = gemm_k * gemm_n;
635 636 637 638 639 640 641 642 643 644 645 646 647
    blas.BatchedGEMM(transA,
                     transB,
                     gemm_m,
                     gemm_n,
                     gemm_k,
                     alpha,
                     qk_out_grad_data,
                     k_ptr,
                     beta,
                     q_grad_ptr,
                     gemm_batch_size,
                     stride_a,
                     stride_b);
648 649 650

    // transpose bw
    std::vector<int> perm_1 = {1, 3, 0, 2, 4};
651
    phi::funcs::TransposeGPUKernelDriver<T>(
652
        dev_ctx_, *transpose_2_out_grad_tensor, perm_1, qkv_input_grad_tensor);
653 654 655
  }

 private:
L
Leo Chen 已提交
656
  const phi::GPUContext& dev_ctx_;
657 658 659 660 661 662 663 664 665 666 667

  int64_t batch_size_;
  int64_t seq_len_;
  int64_t num_head_;
  int64_t head_dim_;

  AttnDropoutParam dropout_param_;
};

}  // namespace operators
}  // namespace paddle