fmha_ref.h 17.5 KB
Newer Older
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13 14 15 16 17
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/operators/dropout_impl.cu.h"
18
#include "paddle/fluid/operators/fused/fused_softmax_mask.cu.h"
19
#include "paddle/fluid/operators/transpose_op.cu.h"
20
#include "paddle/phi/kernels/funcs/broadcast_function.h"
21
#include "paddle/phi/kernels/funcs/concat_and_split_functor.h"
W
WangXi 已提交
22
#include "paddle/phi/kernels/funcs/elementwise_base.h"
23
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
W
WangXi 已提交
24
#include "paddle/phi/kernels/funcs/functors.h"
25
#include "paddle/phi/kernels/gpudnn/softmax_gpudnn.h"
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class AttnDropoutParam {
 public:
  AttnDropoutParam() {
    is_test_ = false;
    dropout_implementation_ = "downgrade_in_infer";
    dropout_prob_ = 0.5;
    is_upscale_in_train_ = false;
    is_fix_seed_ = false;
    seed_val_ = 0;
    seed_ = nullptr;
  }
43 44 45 46 47 48 49
  AttnDropoutParam(bool is_test,
                   const std::string dropout_implementation,
                   float dropout_prob,
                   bool is_upscale_in_train,
                   bool is_fix_seed,
                   int seed_val,
                   const Tensor* seed) {
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    is_test_ = is_test;
    dropout_implementation_ = dropout_implementation;
    dropout_prob_ = dropout_prob;
    is_upscale_in_train_ = is_upscale_in_train;
    is_fix_seed_ = is_fix_seed;
    seed_val_ = seed_val;
    seed_ = seed;
  }
  bool is_test_;
  std::string dropout_implementation_;
  float dropout_prob_;
  bool is_upscale_in_train_;
  bool is_fix_seed_;
  int seed_val_;
  const Tensor* seed_;
};

template <typename T>
class FMHARef {
 public:
70 71 72 73 74
  FMHARef(const platform::CUDADeviceContext& dev_ctx,
          int64_t batch_size,
          int64_t seq_len,
          int64_t num_head,
          int64_t head_dim,
75 76 77 78 79 80 81 82 83 84 85
          AttnDropoutParam param)
      : dev_ctx_(dev_ctx),
        batch_size_(batch_size),
        seq_len_(seq_len),
        num_head_(num_head),
        head_dim_(head_dim),
        dropout_param_(param) {}

  ~FMHARef() {}

  void ComputeForward(const Tensor& qkv_input_tensor,
86
                      const Tensor* cache_kv_tensor,
87
                      const Tensor* src_mask_tensor,
88
                      Tensor* transpose_2_out_tensor,
89 90 91 92
                      Tensor* cache_kv_out_tensor,
                      Tensor* qk_out_tensor,
                      Tensor* src_mask_out_tensor,
                      Tensor* softmax_out_tensor,
93
                      Tensor* dropout_mask_out_tensor,
94 95
                      Tensor* dropout_out_tensor,
                      Tensor* qktv_out_tensor,
96 97
                      Tensor* fmha_out_tensor) {
    // input shape: [bs, seq_len, 3, num_head, head_dim]
98
    // transpose with perm [2, 0, 3, 1, 4],
99 100 101
    // output_shape: [3, bs, num_head, seq_len, head_dim]
    int ndims = 5;
    std::vector<int> perm_1 = {2, 0, 3, 1, 4};
102 103
    TransposeGPUKernelDriver<T>(
        dev_ctx_, ndims, qkv_input_tensor, perm_1, transpose_2_out_tensor);
104 105 106 107 108 109 110
    T* qkv_data = transpose_2_out_tensor->data<T>();
    T* qk_out_data = qk_out_tensor->data<T>();
    T* qktv_out_data = qktv_out_tensor->data<T>();
    T* softmax_out_data = softmax_out_tensor->data<T>();
    T* dropout_out_data = dropout_out_tensor->data<T>();
    T* fmha_out_data = fmha_out_tensor->data<T>();

111 112 113 114 115 116 117 118 119 120 121
    auto out_seq_len = seq_len_;
    if (cache_kv_tensor) {
      // kv [2, bs, num_head, seq_len, head_dim]
      auto kv_tensor = transpose_2_out_tensor->Slice(1, 3);
      phi::funcs::ConcatFunctor<phi::GPUContext, T> concat;
      // out [2, bs, num_head, cache_seq_len + seq_len, head_dim]
      concat(dev_ctx_, {*cache_kv_tensor, kv_tensor}, 3, cache_kv_out_tensor);
      out_seq_len = cache_kv_out_tensor->dims()[3];
    }

    int64_t q_size = batch_size_ * seq_len_ * num_head_ * head_dim_;
122
    T* q_ptr = qkv_data;
123 124 125 126 127 128 129 130 131 132 133 134
    T* k_ptr = nullptr;
    T* v_ptr = nullptr;

    if (cache_kv_tensor) {
      int64_t k_size = cache_kv_out_tensor->numel() / 2;
      k_ptr = cache_kv_out_tensor->data<T>();
      v_ptr = k_ptr + k_size;
    } else {
      int64_t k_size = q_size;
      k_ptr = q_ptr + q_size;
      v_ptr = k_ptr + k_size;
    }
135

W
WangXi 已提交
136 137 138 139 140 141 142 143
    {
      // NOTE(wangxi): We scale Q with 1/sqrt(Dh) before QK^T, because for
      // float16 calculation, INF may appear in QK^T if we do not scale before.
      float alpha = 1.0 / sqrt(head_dim_);
      auto q_tensor = transpose_2_out_tensor->Slice(0, 1);
      auto functor = phi::funcs::ScaleFunctor<T>(alpha);
      std::vector<const framework::Tensor*> ins = {&q_tensor};
      std::vector<framework::Tensor*> outs = {&q_tensor};
144
      phi::funcs::ElementwiseKernel<T>(dev_ctx_, ins, &outs, functor);
W
WangXi 已提交
145 146
    }

147 148 149
    // q*k^t, batched_gemm
    CBLAS_TRANSPOSE transA = CblasNoTrans;
    CBLAS_TRANSPOSE transB = CblasTrans;
150
    auto blas = phi::funcs::GetBlas<platform::CUDADeviceContext, T>(dev_ctx_);
151 152
    int gemm_batch_size = batch_size_ * num_head_;
    int gemm_m = seq_len_;
153
    int gemm_n = out_seq_len;
154
    int gemm_k = head_dim_;
W
WangXi 已提交
155
    T alpha = static_cast<T>(1.0);
156 157 158
    T beta = static_cast<T>(0.0);
    int64_t stride_a = gemm_m * gemm_k;
    int64_t stride_b = gemm_k * gemm_n;
159 160 161 162 163 164 165 166 167 168 169 170
    blas.BatchedGEMM(transA,
                     transB,
                     gemm_m,
                     gemm_n,
                     gemm_k,
                     alpha,
                     q_ptr,
                     k_ptr,
                     beta,
                     qk_out_data,
                     gemm_batch_size,
                     stride_a,
171 172
                     stride_b);
    int softmax_axis = -1;
173
    if (src_mask_tensor != nullptr) {
174
      if (src_mask_out_tensor == nullptr && seq_len_ == out_seq_len) {
175 176 177 178 179 180 181
        LaunchFusedSoftmaxMaskKernel<T>(qk_out_data,
                                        src_mask_tensor->data<T>(),
                                        softmax_out_data,
                                        batch_size_,
                                        num_head_,
                                        seq_len_,
                                        dev_ctx_.stream());
182 183 184 185 186 187 188
      } else {
        std::vector<const Tensor*> ins;
        std::vector<Tensor*> outs;
        ins.emplace_back(qk_out_tensor);
        ins.emplace_back(src_mask_tensor);
        outs.emplace_back(src_mask_out_tensor);
        int elewise_add_axis = -1;
189
        phi::funcs::BroadcastKernel<phi::ElementwiseType::kBinary, T, T>(
190 191 192 193
            dev_ctx_,
            ins,
            &outs,
            elewise_add_axis,
194
            phi::funcs::AddFunctor<T>());
195

196 197 198
        phi::SoftmaxForwardCUDAKernelDriver<T>(
            dev_ctx_, *src_mask_out_tensor, softmax_axis, softmax_out_tensor);
      }
199
    } else {
200 201
      phi::SoftmaxForwardCUDAKernelDriver<T>(
          dev_ctx_, *qk_out_tensor, softmax_axis, softmax_out_tensor);
202 203 204 205 206
    }

    transB = CblasNoTrans;
    gemm_m = seq_len_;
    gemm_n = head_dim_;
207
    gemm_k = out_seq_len;
208 209 210 211 212 213
    alpha = static_cast<T>(1.0);
    stride_a = gemm_m * gemm_k;
    stride_b = gemm_k * gemm_n;

    if (dropout_param_.dropout_prob_) {
      DropoutFwGPUKernelDriver<T>(
H
hong 已提交
214
          static_cast<const phi::GPUContext&>(dev_ctx_),
215 216 217 218
          dropout_param_.is_test_,
          dropout_param_.dropout_prob_,
          dropout_param_.is_upscale_in_train_,
          dropout_param_.is_fix_seed_,
219
          dropout_param_.seed_val_,
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
          static_cast<const Tensor&>(*softmax_out_tensor),
          dropout_param_.seed_,
          dropout_mask_out_tensor,
          dropout_out_tensor,
          false);
      blas.BatchedGEMM(transA,
                       transB,
                       gemm_m,
                       gemm_n,
                       gemm_k,
                       alpha,
                       dropout_out_data,
                       v_ptr,
                       beta,
                       qktv_out_data,
                       gemm_batch_size,
                       stride_a,
                       stride_b);
238 239 240
    } else {
      // softmax_out * v, batched_gemm
      // output shape: [batch_size, num_heads, seq_len, head_dim]
241 242 243 244 245 246 247 248 249 250 251 252 253
      blas.BatchedGEMM(transA,
                       transB,
                       gemm_m,
                       gemm_n,
                       gemm_k,
                       alpha,
                       softmax_out_data,
                       v_ptr,
                       beta,
                       qktv_out_data,
                       gemm_batch_size,
                       stride_a,
                       stride_b);
254 255 256 257 258
    }
    // transpose: [0, 2, 1, 3]
    // output shape: [batch_size, seq_len, num_heads, head_dim]
    std::vector<int> perm_3 = {0, 2, 1, 3};
    ndims = 4;
259 260
    TransposeGPUKernelDriver<T>(
        dev_ctx_, ndims, *qktv_out_tensor, perm_3, fmha_out_tensor);
261 262
  }

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
  void ComputeBackward(const Tensor& transpose_2_out_tensor,
                       const Tensor* src_mask_tensor,
                       const Tensor& softmax_out_tensor,
                       const Tensor& dropout_mask_out_tensor,
                       const Tensor& dropout_out_tensor,
                       const Tensor& qk_out_tensor,
                       const Tensor& src_mask_out_tensor,
                       const Tensor& fmha_out_grad_tensor,
                       Tensor* qktv_out_grad_tensor,
                       Tensor* dropout_out_grad_tensor,
                       Tensor* softmax_out_grad_tensor,
                       Tensor* src_mask_out_grad_tensor,
                       Tensor* qk_out_grad_tensor,
                       Tensor* transpose_2_out_grad_tensor,
                       Tensor* src_mask_grad_tensor,
                       Tensor* qkv_input_grad_tensor) {
279
    auto blas = phi::funcs::GetBlas<platform::CUDADeviceContext, T>(dev_ctx_);
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    int q_size = batch_size_ * seq_len_ * num_head_ * head_dim_;
    int k_size = q_size;
    int softmax_axis = -1;

    T* qkv_grad_data = transpose_2_out_grad_tensor->data<T>();
    T* q_grad_ptr = qkv_grad_data;
    T* k_grad_ptr = q_grad_ptr + q_size;
    T* v_grad_ptr = k_grad_ptr + k_size;
    const T* qkv_data = transpose_2_out_tensor.data<T>();
    const T* q_ptr = qkv_data;
    const T* k_ptr = q_ptr + q_size;
    const T* v_ptr = k_ptr + k_size;

    const T* softmax_out_data = softmax_out_tensor.data<T>();
    T* softmax_out_grad_data = softmax_out_grad_tensor->data<T>();
    const T* dropout_out_data = dropout_out_tensor.data<T>();
    T* dropout_out_grad_data = dropout_out_grad_tensor->data<T>();
    T* qktv_out_grad_data = qktv_out_grad_tensor->data<T>();

    // transpose bw
    int ndims = 4;
    std::vector<int> perm_3 = {0, 2, 1, 3};
302 303
    TransposeGPUKernelDriver<T>(
        dev_ctx_, ndims, fmha_out_grad_tensor, perm_3, qktv_out_grad_tensor);
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

    // recall batchedgemm(nn) fw: softmax_out_data(x) * v_ptr(y) =
    // qktv_out_data(out)
    CBLAS_TRANSPOSE transA = CblasTrans;
    CBLAS_TRANSPOSE transB = CblasNoTrans;
    int gemm_batch_size = batch_size_ * num_head_;
    int gemm_m = seq_len_;
    int gemm_n = head_dim_;
    int gemm_k = seq_len_;
    T alpha = static_cast<T>(1.0);
    T beta = static_cast<T>(0.0);
    int64_t stride_a = gemm_m * gemm_k;
    int64_t stride_b = gemm_k * gemm_n;
    // bw: dy = x^t * dout
    if (dropout_param_.dropout_prob_) {
319 320 321 322 323 324 325 326 327 328 329 330 331
      blas.BatchedGEMM(transA,
                       transB,
                       gemm_m,
                       gemm_n,
                       gemm_k,
                       alpha,
                       dropout_out_data,
                       qktv_out_grad_data,
                       beta,
                       v_grad_ptr,
                       gemm_batch_size,
                       stride_a,
                       stride_b);
332
    } else {
333 334 335 336 337 338 339 340 341 342 343 344 345
      blas.BatchedGEMM(transA,
                       transB,
                       gemm_m,
                       gemm_n,
                       gemm_k,
                       alpha,
                       softmax_out_data,
                       qktv_out_grad_data,
                       beta,
                       v_grad_ptr,
                       gemm_batch_size,
                       stride_a,
                       stride_b);
346 347 348 349 350 351 352 353 354 355
    }
    // bw: dx = dout * y^t
    transA = CblasNoTrans;
    transB = CblasTrans;
    gemm_m = seq_len_;
    gemm_n = seq_len_;
    gemm_k = head_dim_;
    stride_a = gemm_m * gemm_k;
    stride_b = gemm_k * gemm_n;
    if (dropout_param_.dropout_prob_) {
356 357 358 359 360 361 362 363 364 365 366 367 368
      blas.BatchedGEMM(transA,
                       transB,
                       gemm_m,
                       gemm_n,
                       gemm_k,
                       alpha,
                       qktv_out_grad_data,
                       v_ptr,
                       beta,
                       dropout_out_grad_data,
                       gemm_batch_size,
                       stride_a,
                       stride_b);
369
    } else {
370 371 372 373 374 375 376 377 378 379 380 381 382
      blas.BatchedGEMM(transA,
                       transB,
                       gemm_m,
                       gemm_n,
                       gemm_k,
                       alpha,
                       qktv_out_grad_data,
                       v_ptr,
                       beta,
                       softmax_out_grad_data,
                       gemm_batch_size,
                       stride_a,
                       stride_b);
383 384 385 386
    }
    // dropout bw
    if (dropout_param_.dropout_prob_) {
      DropoutGradGPUKernelDriver<T>(
387 388 389 390
          static_cast<const phi::GPUContext&>(dev_ctx_),
          false,
          dropout_param_.dropout_prob_,
          dropout_param_.is_upscale_in_train_,
391
          static_cast<const Tensor&>(*dropout_out_grad_tensor),
392 393 394
          dropout_mask_out_tensor,
          softmax_out_grad_tensor,
          false);
395 396
    }

397
    if (src_mask_tensor != nullptr) {
398 399 400 401 402
      phi::SoftmaxBackwardCUDAKernelDriver<T>(dev_ctx_,
                                              softmax_out_tensor,
                                              *softmax_out_grad_tensor,
                                              softmax_axis,
                                              src_mask_out_grad_tensor);
403 404 405 406 407 408 409
      // recall LaunchElementwiseCudaKernel fw:  src_mask_out = qk_out +
      // src_mask
      // Special case when dy is not needed and dx doesn't reduce
      if (qk_out_grad_tensor != nullptr && src_mask_grad_tensor == nullptr &&
          qk_out_tensor.dims() == src_mask_out_tensor.dims()) {
        VLOG(4) << "Special case when dy is not needed and dx doesn't "
                   "reduce";
410 411 412 413
        framework::TensorCopy(*src_mask_out_grad_tensor,
                              dev_ctx_.GetPlace(),
                              dev_ctx_,
                              qk_out_grad_tensor);
414 415 416 417 418 419 420 421
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Only used for the backward elementwise_add op when"
            "dy is not needed and dx is not reduce"));
        return;
      }

    } else {
422 423
      phi::SoftmaxBackwardCUDAKernelDriver<T>(dev_ctx_,
                                              softmax_out_tensor,
424
                                              *softmax_out_grad_tensor,
425 426
                                              softmax_axis,
                                              qk_out_grad_tensor);
427 428 429
    }

    T* qk_out_grad_data = qk_out_grad_tensor->data<T>();
W
WangXi 已提交
430 431 432
    // NOTE(wangxi): For we scale Q with 1/sqrt(Dh) in forward, so we set
    //   alpha = 1.0 in backward.
    alpha = static_cast<T>(1.0);
433 434 435 436 437 438 439 440 441
    // recall batchedgemm(nt) fw:  q_ptr * (k_ptr)^t = qk_out
    // bw: dy (seq_len * head_dim) = (dout)^t * x
    transA = CblasTrans;
    transB = CblasNoTrans;
    gemm_m = seq_len_;
    gemm_n = head_dim_;
    gemm_k = seq_len_;
    stride_a = gemm_m * gemm_k;
    stride_b = gemm_k * gemm_n;
442 443 444 445 446 447 448 449 450 451 452 453 454
    blas.BatchedGEMM(transA,
                     transB,
                     gemm_m,
                     gemm_n,
                     gemm_k,
                     alpha,
                     qk_out_grad_data,
                     q_ptr,
                     beta,
                     k_grad_ptr,
                     gemm_batch_size,
                     stride_a,
                     stride_b);
455
    // dx (seq_len * head_dim) = dout * y
W
WangXi 已提交
456
    alpha = static_cast<T>(1.0 / sqrt(head_dim_));
457 458 459 460 461 462 463
    transA = CblasNoTrans;
    transB = CblasNoTrans;
    gemm_m = seq_len_;
    gemm_n = head_dim_;
    gemm_k = seq_len_;
    stride_a = gemm_m * gemm_k;
    stride_b = gemm_k * gemm_n;
464 465 466 467 468 469 470 471 472 473 474 475 476
    blas.BatchedGEMM(transA,
                     transB,
                     gemm_m,
                     gemm_n,
                     gemm_k,
                     alpha,
                     qk_out_grad_data,
                     k_ptr,
                     beta,
                     q_grad_ptr,
                     gemm_batch_size,
                     stride_a,
                     stride_b);
477 478 479 480

    // transpose bw
    ndims = 5;
    std::vector<int> perm_1 = {1, 3, 0, 2, 4};
481 482 483 484 485
    TransposeGPUKernelDriver<T>(dev_ctx_,
                                ndims,
                                *transpose_2_out_grad_tensor,
                                perm_1,
                                qkv_input_grad_tensor);
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
  }

 private:
  const platform::CUDADeviceContext& dev_ctx_;

  int64_t batch_size_;
  int64_t seq_len_;
  int64_t num_head_;
  int64_t head_dim_;

  AttnDropoutParam dropout_param_;
};

}  // namespace operators
}  // namespace paddle