topology.py 14.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import sys
16 17 18 19 20
import paddle
import collections
import numpy as np
from itertools import product
from functools import reduce
21 22
from ..utils.log_util import logger

23 24
__all__ = ['CommunicateTopology', 'HybridCommunicateGroup']

25 26
_HYBRID_PARALLEL_GROUP = None

27

28
class ParallelMode(object):
Y
Yanxing Shi 已提交
29 30 31 32 33
    """
    There are all the parallel modes currently supported:
    - DATA_PARALLEL: Distribute input data to different devices.
    - TENSOR_PARALLEL: Shards tensors in the network to different devices.
    - PIPELINE_PARALLEL: Place different layers of the network on different devices.
34
    - SHARDING_PARALLEL: Segment the model parameters, parameter gradients and optimizer states
Y
Yanxing Shi 已提交
35 36 37 38 39 40 41 42 43 44
                         corresponding to the parameters to each device.

    Examples:
        .. code-block:: python

            import paddle
            parallel_mode = paddle.distributed.ParallelMode
            print(parallel_mode.DATA_PARALLEL)  # 0

    """
45
    DATA_PARALLEL = 0
46
    TENSOR_PARALLEL = 1
47
    PIPELINE_PARALLEL = 2
J
JZ-LIANG 已提交
48
    SHARDING_PARALLEL = 3
49 50


51
class CommunicateTopology(object):
52

53
    def __init__(self,
J
JZ-LIANG 已提交
54 55
                 hybrid_group_names=["data", "pipe", "sharding", "model"],
                 dims=[1, 1, 1, 1]):
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
        self._parallel_names = hybrid_group_names
        self._dims = dims
        self.coordinate = collections.namedtuple('Coordinate',
                                                 self._parallel_names)
        self._world_size = reduce(lambda x, y: x * y, self._dims)

        ranges = [range(d) for d in self._dims]
        all_coordinate = [self.coordinate(*x) for x in product(*ranges)]

        self._coord2rank = dict(zip(all_coordinate, range(len(all_coordinate))))
        self._rank2coord = dict(
            zip(self._coord2rank.values(), self._coord2rank.keys()))

    def get_hybrid_group_names(self):
        return self._parallel_names

    def get_dim(self, axis_name):
        return self._dims[self._parallel_names.index(axis_name)]

    def world_size(self):
        return self._world_size

    def get_rank(self, **args):
        assert len(args) == len(self._dims)
        key = self.coordinate(**args)
        assert key in self._coord2rank.keys()
        return self._coord2rank[key]

    def get_coord(self, rank):
        assert rank < self._world_size
        assert rank in self._rank2coord.keys()
        return self._rank2coord[rank]

    def get_axis_list(self, axis_name, index):
        axis = self._parallel_names.index(axis_name)
        ranks = [
            self._coord2rank[coord] for coord in self._coord2rank.keys()
            if coord[axis] == index
        ]
        ranks.sort()
        return ranks

    def get_dim_size(self, axis_name):
        assert axis_name in self._parallel_names
        return self._dims[self._parallel_names.index(axis_name)]

    def get_comm_list(self, axis_name):
        assert axis_name in self._parallel_names
        other_axis_names = [
            name for name in self._parallel_names if name != axis_name
        ]

        ranges = []
        for name in other_axis_names:
            dim_num = self.get_dim_size(name)
            ranges.append(range(dim_num))

        all_result = []
        for x in product(*ranges):
            key_coord = {}
            for other_name in other_axis_names:
                key_coord[other_name] = x[other_axis_names.index(other_name)]

            result = []
            for i in range(0, self.get_dim_size(axis_name)):
                key_coord[axis_name] = i
                result.append(self._coord2rank[self.coordinate(**key_coord)])
            all_result.append(result)

        return all_result

127 128 129 130 131
    def get_rank_from_stage(self, global_rank, **kwargs):
        coord = self.get_coord(global_rank)
        tf = coord._replace(**kwargs)._asdict()
        return self.get_rank(**tf)

132 133

class HybridCommunicateGroup(object):
134

135 136 137 138 139
    def __init__(self, topology):
        self.nranks = paddle.distributed.get_world_size()
        self.global_rank = paddle.distributed.get_rank()
        self._topo = topology

140 141 142
        self._dp_degree = self._topo.get_dim('data')
        self._mp_degree = self._topo.get_dim('model')
        self._pp_degree = self._topo.get_dim('pipe')
J
JZ-LIANG 已提交
143
        self._sharding_degree = self._topo.get_dim('sharding')
144 145 146

        self._data_parallel_id = self._get_data_parallel_id()
        self._model_parallel_id = self._get_model_parallel_id()
J
JZ-LIANG 已提交
147
        self._sharding_parallel_id = self._get_sharding_parallel_id()
148
        self.stage_id = self._get_pipe_parallel_id()
149 150

        assert self._check_vaild_topo(
151
        ), "Here is an unreasonable topogy setting. world_size: {}, but" \
J
JZ-LIANG 已提交
152 153
            "mp_num: {}, sharding_num: {}, pp_num: {}, dp_num: {}".format(self.nranks,
            self._mp_degree, self._sharding_degree, self._pp_degree, self._dp_degree)
154 155 156 157 158 159

        # create comm group for data parallel
        self._dp_group, self._dp_comm_group = self._set_comm_group("data")

        # create comm group for model parallel
        self._mp_group, self._mp_comm_group = self._set_comm_group("model")
160

161 162 163
        # create comm group for pipe parallel
        self._pp_group, self._pp_comm_group = self._set_comm_group("pipe")

J
JZ-LIANG 已提交
164 165 166 167
        # create comm group for sharding parallel
        self._sharding_group, self._sharding_comm_group = self._set_comm_group(
            "sharding")

168 169 170 171
        # create global group for check inf_nan / clip global norm
        self._check_group, self._check_comm_group = self._set_check_group(
            "data")

172 173 174 175
        # create p2p group
        self.is_first_stage = (self.stage_id == 0)
        self.is_last_stage = (self.stage_id == (self._pp_degree - 1))

176 177 178 179
        # create p2p_groups
        if self._pp_degree > 1:
            self._set_p2p_group()

J
JZ-LIANG 已提交
180 181 182 183 184 185
        debug_str = "HybridParallelInfo: rank_id: %d, mp_degree: %d, " \
                    "sharding_degree: %d, pp_degree: %d, dp_degree: %d" % (self.global_rank, self._mp_degree,
                    self._sharding_degree, self._pp_degree, self._dp_degree)
        debug_str += ", mp_group: %s,  sharding_group: %s, pp_group: %s, dp_group: %s, check/clip group: %s" % (
            self._mp_group, self._sharding_group, self._pp_group,
            self._dp_group, self._check_group)
186
        logger.info(debug_str)
187 188 189

        global _HYBRID_PARALLEL_GROUP
        _HYBRID_PARALLEL_GROUP = self
190

191
    def get_parallel_mode(self):
J
JZ-LIANG 已提交
192
        # there are four modes : DataParallel / TensorParallel / PipelineParallel / ShardingParallel
193
        # NOTE when sharding conjugates with other parallel, sharding should act like a optimizer and
J
JZ-LIANG 已提交
194 195 196 197 198 199
        # adding its parallel logic within that parallelism
        # when use sharding alone, it should have its own parallelism for its parallel logic
        # TODO modify 3 others parallel to support sharding
        if self._mp_degree == 1 and self._pp_degree == 1 and self._dp_degree == 1 and self._sharding_degree > 1:
            return ParallelMode.SHARDING_PARALLEL
        elif self._mp_degree == 1 and self._pp_degree == 1:
200 201 202
            return ParallelMode.DATA_PARALLEL
        elif self._mp_degree > 1 and self._pp_degree == 1:
            # initialize the seed
203
            return ParallelMode.TENSOR_PARALLEL
204 205 206
        elif self._pp_degree > 1:
            return ParallelMode.PIPELINE_PARALLEL

207
    def _check_vaild_topo(self):
J
JZ-LIANG 已提交
208
        return self._dp_degree * self._mp_degree * self._pp_degree * self._sharding_degree == self.nranks
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

    def _set_comm_group(self, parallel_method="data"):
        parallel_group = []
        parallel_comm_group = None
        parallel_groups = self._topo.get_comm_list(parallel_method)

        for group in parallel_groups:
            comm_group = paddle.distributed.new_group(ranks=group)
            if self.global_rank in group:
                parallel_group = group
                parallel_comm_group = comm_group

        assert len(parallel_group) > 0
        assert parallel_comm_group is not None

        return parallel_group, parallel_comm_group

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    def _set_check_group(self, parallel_method="data"):
        parallel_group = []
        parallel_comm_group = None
        parallel_size = self._topo.get_dim(parallel_method)
        for idx in range(parallel_size):
            parallel_groups = self._topo.get_axis_list(parallel_method, idx)
            comm_group = paddle.distributed.new_group(ranks=parallel_groups)
            if self.global_rank in parallel_groups:
                parallel_group = parallel_groups
                parallel_comm_group = comm_group

        assert len(parallel_group) > 0
        assert parallel_comm_group is not None

        return parallel_group, parallel_comm_group

242 243 244 245 246 247 248 249
    def _get_p2p_next_rank(self):
        assert hasattr(self, 'next_rank'), "next_rank has not been inited"
        return self.next_rank

    def _get_p2p_prev_rank(self):
        assert hasattr(self, 'prev_rank'), "prev_rank has not been inited"
        return self.prev_rank

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    def _set_p2p_group(self):
        comm_lists = self._topo.get_comm_list('pipe')

        self.send_next_group = None
        self.send_prev_group = None
        self.recv_next_group = None
        self.recv_prev_group = None

        for comm_ranks in comm_lists:
            assert len(comm_ranks) == self._pp_degree
            for idx, rank in enumerate(comm_ranks):
                curr_rank = rank
                next_rank = comm_ranks[(idx + 1) % self._pp_degree]
                prev_rank = comm_ranks[(idx - 1) % self._pp_degree]

265 266 267 268
                if self.global_rank == curr_rank:
                    self.next_rank = next_rank
                    self.prev_rank = prev_rank

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
                next_group = paddle.distributed.new_group(
                    ranks=[curr_rank, next_rank])
                if self.global_rank == curr_rank:
                    self.send_next_group = next_group
                elif self.global_rank == next_rank:
                    self.recv_prev_group = next_group

                prev_group = paddle.distributed.new_group(
                    ranks=[prev_rank, curr_rank])

                if self.global_rank == curr_rank:
                    self.send_prev_group = prev_group
                elif self.global_rank == prev_rank:
                    self.recv_next_group = prev_group

        assert self.send_next_group is not None
        assert self.send_prev_group is not None
        assert self.recv_next_group is not None
        assert self.recv_prev_group is not None

289 290 291 292 293 294 295 296 297 298 299 300 301 302
    def topology(self):
        return self._topo

    def get_global_rank(self):
        return self.global_rank

    # data parallel message:
    def _get_data_parallel_id(self):
        return self._topo.get_coord(self.global_rank).data

    def get_data_parallel_rank(self):
        return self._data_parallel_id

    def get_data_parallel_world_size(self):
303
        return self._dp_degree
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

    def get_data_parallel_group(self):
        return self._dp_comm_group

    def get_data_parallel_group_src_rank(self):
        return self._dp_comm_group.ranks[0]

    # model parallel message:
    def _get_model_parallel_id(self):
        return self._topo.get_coord(self.global_rank).model

    def get_model_parallel_rank(self):
        return self._model_parallel_id

    def get_model_parallel_world_size(self):
319
        return self._mp_degree
320 321 322 323 324 325

    def get_model_parallel_group(self):
        return self._mp_comm_group

    def get_model_parallel_group_src_rank(self):
        return self._mp_comm_group.ranks[0]
326

327 328 329 330 331 332 333 334 335 336 337 338 339
    # pipeline parallel message
    def _get_pipe_parallel_id(self):
        return self._topo.get_coord(self.global_rank).pipe

    def get_stage_id(self):
        return self.stage_id

    def get_pipe_parallel_world_size(self):
        return self._pp_degree

    def get_pipe_parallel_group(self):
        return self._pp_comm_group

340 341 342
    def get_p2p_groups(self):
        return self.send_next_group, self.send_prev_group, self.recv_next_group, self.recv_prev_group

J
JZ-LIANG 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
    # sharding parallel message:
    def _get_sharding_parallel_id(self):
        return self._topo.get_coord(self.global_rank).sharding

    def get_sharding_parallel_rank(self):
        return self._sharding_parallel_id

    def get_sharding_parallel_world_size(self):
        return self._sharding_degree

    def get_sharding_parallel_group(self):
        return self._sharding_comm_group

    def get_sharding_parallel_group_src_rank(self):
        # TODO should the src rank related to the shard rank for each parameter ?
        return self._sharding_comm_group.ranks[0]

360 361 362
    # check parallel group
    def get_check_parallel_group(self):
        return self._check_comm_group
363

364
    def get_rank_from_stage(self, stage_id, **kwargs):
365 366 367
        return self._topo.get_rank_from_stage(self.global_rank,
                                              pipe=stage_id,
                                              **kwargs)
W
WangXi 已提交
368 369 370 371 372 373 374 375 376 377 378 379


class _CommunicateGroup(object):
    """ tmp for static """

    def __init__(self):
        global _HYBRID_PARALLEL_GROUP
        _HYBRID_PARALLEL_GROUP = self
        self.groups = dict()

    def set_comm_group(self, group_name, group_rank, group_size, ring_id,
                       group_ranks):
380 381
        group = paddle.distributed.collective.Group(group_rank, ring_id,
                                                    group_ranks)
W
WangXi 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395
        self.groups[group_name] = group

    def get_group(self, group_name):
        assert group_name in self.groups
        return self.groups[group_name]

    def get_model_parallel_group(self):
        return self.get_group('model')

    def get_model_parallel_world_size(self):
        return self.get_group('model').nranks

    def get_model_parallel_rank(self):
        return self.get_group('model').rank