topology.py 9.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function
import sys
17 18 19 20 21
import paddle
import collections
import numpy as np
from itertools import product
from functools import reduce
22 23
from ..utils.log_util import logger

24 25
__all__ = ['CommunicateTopology', 'HybridCommunicateGroup']

26 27
_HYBRID_PARALLEL_GROUP = None

28

29 30
class ParallelMode(object):
    DATA_PARALLEL = 0
31
    TENSOR_PARALLEL = 1
32 33 34
    PIPELINE_PARALLEL = 2


35
class CommunicateTopology(object):
36 37 38
    def __init__(self,
                 hybrid_group_names=["data", "pipe", "model"],
                 dims=[1, 1, 1]):
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        self._parallel_names = hybrid_group_names
        self._dims = dims
        self.coordinate = collections.namedtuple('Coordinate',
                                                 self._parallel_names)
        self._world_size = reduce(lambda x, y: x * y, self._dims)

        ranges = [range(d) for d in self._dims]
        all_coordinate = [self.coordinate(*x) for x in product(*ranges)]

        self._coord2rank = dict(zip(all_coordinate, range(len(all_coordinate))))
        self._rank2coord = dict(
            zip(self._coord2rank.values(), self._coord2rank.keys()))

    def get_hybrid_group_names(self):
        return self._parallel_names

    def get_dim(self, axis_name):
        return self._dims[self._parallel_names.index(axis_name)]

    def world_size(self):
        return self._world_size

    def get_rank(self, **args):
        assert len(args) == len(self._dims)
        key = self.coordinate(**args)
        assert key in self._coord2rank.keys()
        return self._coord2rank[key]

    def get_coord(self, rank):
        assert rank < self._world_size
        assert rank in self._rank2coord.keys()
        return self._rank2coord[rank]

    def get_axis_list(self, axis_name, index):
        axis = self._parallel_names.index(axis_name)
        ranks = [
            self._coord2rank[coord] for coord in self._coord2rank.keys()
            if coord[axis] == index
        ]
        ranks.sort()
        return ranks

    def get_dim_size(self, axis_name):
        assert axis_name in self._parallel_names
        return self._dims[self._parallel_names.index(axis_name)]

    def get_comm_list(self, axis_name):
        assert axis_name in self._parallel_names
        other_axis_names = [
            name for name in self._parallel_names if name != axis_name
        ]

        ranges = []
        for name in other_axis_names:
            dim_num = self.get_dim_size(name)
            ranges.append(range(dim_num))

        all_result = []
        for x in product(*ranges):
            key_coord = {}
            for other_name in other_axis_names:
                key_coord[other_name] = x[other_axis_names.index(other_name)]

            result = []
            for i in range(0, self.get_dim_size(axis_name)):
                key_coord[axis_name] = i
                result.append(self._coord2rank[self.coordinate(**key_coord)])
            all_result.append(result)

        return all_result

110 111 112 113 114
    def get_rank_from_stage(self, global_rank, **kwargs):
        coord = self.get_coord(global_rank)
        tf = coord._replace(**kwargs)._asdict()
        return self.get_rank(**tf)

115 116 117 118 119 120 121

class HybridCommunicateGroup(object):
    def __init__(self, topology):
        self.nranks = paddle.distributed.get_world_size()
        self.global_rank = paddle.distributed.get_rank()
        self._topo = topology

122 123 124
        self._dp_degree = self._topo.get_dim('data')
        self._mp_degree = self._topo.get_dim('model')
        self._pp_degree = self._topo.get_dim('pipe')
125 126 127

        self._data_parallel_id = self._get_data_parallel_id()
        self._model_parallel_id = self._get_model_parallel_id()
128
        self.stage_id = self._get_pipe_parallel_id()
129 130

        assert self._check_vaild_topo(
131 132 133
        ), "Here is an unreasonable topogy setting. world_size: {}, but" \
            "dp_num: {}, mp_num: {}, pp_num: {}".format(self.nranks, self._dp_degree,
            self._mp_degree, self._pp_degree)
134 135 136 137 138 139

        # create comm group for data parallel
        self._dp_group, self._dp_comm_group = self._set_comm_group("data")

        # create comm group for model parallel
        self._mp_group, self._mp_comm_group = self._set_comm_group("model")
140

141 142 143
        # create comm group for pipe parallel
        self._pp_group, self._pp_comm_group = self._set_comm_group("pipe")

144 145 146 147
        # create global group for check inf_nan / clip global norm
        self._check_group, self._check_comm_group = self._set_check_group(
            "data")

148 149 150 151
        # create p2p group
        self.is_first_stage = (self.stage_id == 0)
        self.is_last_stage = (self.stage_id == (self._pp_degree - 1))

152
        debug_str = "HybridParallelInfo: rank_id: %d, dp_degree: %d, " \
153
                    "mp_degree: %d, pp_degree: %d" % (self.global_rank, self._dp_degree,
154
                    self._mp_degree,self._pp_degree)
L
lilong12 已提交
155
        debug_str += ", dp_group: %s, mp_group: %s, pp_group: %s, check/clip group: %s" % (
156
            self._dp_group, self._mp_group, self._pp_group, self._check_group)
157
        logger.info(debug_str)
158 159 160

        global _HYBRID_PARALLEL_GROUP
        _HYBRID_PARALLEL_GROUP = self
161

162
    def get_parallel_mode(self):
163
        # there are three modes : DataParallel / TensorParallel / PipelineParallel
164 165 166 167
        if self._mp_degree == 1 and self._pp_degree == 1:
            return ParallelMode.DATA_PARALLEL
        elif self._mp_degree > 1 and self._pp_degree == 1:
            # initialize the seed
168
            return ParallelMode.TENSOR_PARALLEL
169 170 171
        elif self._pp_degree > 1:
            return ParallelMode.PIPELINE_PARALLEL

172
    def _check_vaild_topo(self):
173
        return self._dp_degree * self._mp_degree * self._pp_degree == self.nranks
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

    def _set_comm_group(self, parallel_method="data"):
        parallel_group = []
        parallel_comm_group = None
        parallel_groups = self._topo.get_comm_list(parallel_method)

        for group in parallel_groups:
            comm_group = paddle.distributed.new_group(ranks=group)
            if self.global_rank in group:
                parallel_group = group
                parallel_comm_group = comm_group

        assert len(parallel_group) > 0
        assert parallel_comm_group is not None

        return parallel_group, parallel_comm_group

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    def _set_check_group(self, parallel_method="data"):
        parallel_group = []
        parallel_comm_group = None
        parallel_size = self._topo.get_dim(parallel_method)
        for idx in range(parallel_size):
            parallel_groups = self._topo.get_axis_list(parallel_method, idx)
            comm_group = paddle.distributed.new_group(ranks=parallel_groups)
            if self.global_rank in parallel_groups:
                parallel_group = parallel_groups
                parallel_comm_group = comm_group

        assert len(parallel_group) > 0
        assert parallel_comm_group is not None

        return parallel_group, parallel_comm_group

207 208 209 210 211 212 213 214 215 216 217 218 219 220
    def topology(self):
        return self._topo

    def get_global_rank(self):
        return self.global_rank

    # data parallel message:
    def _get_data_parallel_id(self):
        return self._topo.get_coord(self.global_rank).data

    def get_data_parallel_rank(self):
        return self._data_parallel_id

    def get_data_parallel_world_size(self):
221
        return self._dp_degree
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

    def get_data_parallel_group(self):
        return self._dp_comm_group

    def get_data_parallel_group_src_rank(self):
        return self._dp_comm_group.ranks[0]

    # model parallel message:
    def _get_model_parallel_id(self):
        return self._topo.get_coord(self.global_rank).model

    def get_model_parallel_rank(self):
        return self._model_parallel_id

    def get_model_parallel_world_size(self):
237
        return self._mp_degree
238 239 240 241 242 243

    def get_model_parallel_group(self):
        return self._mp_comm_group

    def get_model_parallel_group_src_rank(self):
        return self._mp_comm_group.ranks[0]
244

245 246 247 248 249 250 251 252 253 254 255 256 257
    # pipeline parallel message
    def _get_pipe_parallel_id(self):
        return self._topo.get_coord(self.global_rank).pipe

    def get_stage_id(self):
        return self.stage_id

    def get_pipe_parallel_world_size(self):
        return self._pp_degree

    def get_pipe_parallel_group(self):
        return self._pp_comm_group

258 259 260
    # check parallel group
    def get_check_parallel_group(self):
        return self._check_comm_group
261

262 263 264
    def get_rank_from_stage(self, stage_id, **kwargs):
        return self._topo.get_rank_from_stage(
            self.global_rank, pipe=stage_id, **kwargs)
W
WangXi 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292


class _CommunicateGroup(object):
    """ tmp for static """

    def __init__(self):
        global _HYBRID_PARALLEL_GROUP
        _HYBRID_PARALLEL_GROUP = self
        self.groups = dict()

    def set_comm_group(self, group_name, group_rank, group_size, ring_id,
                       group_ranks):
        group = paddle.distributed.collective.Group(group_rank, group_size,
                                                    ring_id, group_ranks)
        self.groups[group_name] = group

    def get_group(self, group_name):
        assert group_name in self.groups
        return self.groups[group_name]

    def get_model_parallel_group(self):
        return self.get_group('model')

    def get_model_parallel_world_size(self):
        return self.get_group('model').nranks

    def get_model_parallel_rank(self):
        return self.get_group('model').rank