flags.cc 32.9 KB
Newer Older
1
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2
// Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Z
Zeng Jinle 已提交
16
#include "paddle/fluid/platform/flags.h"
17
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
18 19 20
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
#endif

Z
Zeng Jinle 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
namespace paddle {
namespace platform {

const ExportedFlagInfoMap &GetExportedFlagInfoMap() {
  return *GetMutableExportedFlagInfoMap();
}

ExportedFlagInfoMap *GetMutableExportedFlagInfoMap() {
  static ExportedFlagInfoMap g_exported_flag_info_map;
  return &g_exported_flag_info_map;
}

}  // namespace platform
}  // namespace paddle

36 37
PADDLE_DEFINE_EXPORTED_int32(inner_op_parallelism,
                             0,
38 39
                             "number of threads for inner op");

40 41 42 43
/**
 * NOTE(paddle-dev): This file is designed to define all public FLAGS.
 */

44 45 46 47 48 49 50 51 52
/**
 * Paddle initialization related FLAG
 * Name: FLAGS_paddle_num_threads
 * Since Version: 0.15.0
 * Value Range: int32, default=1
 * Example: FLAGS_paddle_num_threads=2, set the maximum thread number per
 * instance to 2
 * Note:
 */
53 54
PADDLE_DEFINE_EXPORTED_int32(paddle_num_threads,
                             1,
Z
Zeng Jinle 已提交
55
                             "Number of threads for each paddle instance.");
56

57 58 59 60 61 62 63 64
/**
 * Operator related FLAG
 * Name: FLAGS_check_nan_inf
 * Since Version: 0.13.0
 * Value Range: bool, default=false
 * Example:
 * Note: Used to debug. Checking whether operator produce NAN/INF or not.
 */
Z
Zeng Jinle 已提交
65
PADDLE_DEFINE_EXPORTED_bool(
66 67
    check_nan_inf,
    false,
Z
Zeng Jinle 已提交
68 69
    "Checking whether operator produce NAN/INF or not. It will be "
    "extremely slow so please use this flag wisely.");
70

71 72 73 74
// NOTE(zhiqiu): better to share the flags, otherwise we will have too many
// flags.
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
    defined(PADDLE_WITH_ASCEND_CL)
75 76 77 78 79 80 81 82 83

/**
 * CUDA related related FLAG
 * Name: FLAGS_enable_cublas_tensor_op_math
 * Since Version: 1.2.0
 * Value Range: bool, default=false
 * Example:
 * Note: whether to use Tensor Core, faster but it may loss precision.
 */
Z
Zeng Jinle 已提交
84
PADDLE_DEFINE_EXPORTED_bool(
85 86
    enable_cublas_tensor_op_math,
    false,
87 88 89 90 91 92 93 94
    "The enable_cublas_tensor_op_math indicate whether to use Tensor Core, "
    "but it may loss precision. Currently, There are two CUDA libraries that"
    " use Tensor Cores, cuBLAS and cuDNN. cuBLAS uses Tensor Cores to speed up"
    " GEMM computations(the matrices must be either half precision or single "
    "precision); cuDNN uses Tensor Cores to speed up both convolutions(the "
    "input and output must be half precision) and recurrent neural networks "
    "(RNNs).");

95 96 97 98 99 100 101 102 103 104
/**
 * CUDA related related FLAG
 * Name: FLAGS_gemm_use_half_precision_compute_type
 * Since Version: 2.4
 * Value Range: bool, default=true
 * Example:
 * Note: whether to use fp16 compute type when the input and output is fp16,
 * faster but it may loss precision.
 */
PADDLE_DEFINE_EXPORTED_bool(
105 106
    gemm_use_half_precision_compute_type,
    true,
107 108 109 110
    "Whether to use fp16 compute type when the input and output is fp16, "
    "faster but it may loss precision in most case. If true, the compute "
    "type will be set to fp32. Default is true.");

111 112 113 114 115 116 117 118 119
/**
 * CUDA related FLAG
 * Name: FLAGS_selected_gpus
 * Since Version: 1.3.0
 * Value Range: integer list separated by comma, default empty list
 * Example: FLAGS_selected_gpus=0,1,2,3,4,5,6,7 to train or predict with 0~7 gpu
 * cards
 * Note: A list of device ids separated by comma, like: 0,1,2,3
 */
Z
Zeng Jinle 已提交
120
PADDLE_DEFINE_EXPORTED_string(
121 122
    selected_gpus,
    "",
Z
Zeng Jinle 已提交
123 124 125 126 127 128 129
    "A list of device ids separated by comma, like: 0,1,2,3. "
    "This option is useful when doing multi process training and "
    "each process have only one device (GPU). If you want to use "
    "all visible devices, set this to empty string. NOTE: the "
    "reason of doing this is that we want to use P2P communication"
    "between GPU devices, use CUDA_VISIBLE_DEVICES can only use"
    "share-memory only.");
130 131
#endif

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
#if defined(PADDLE_WITH_CUDA)
/**
 * CUDA related FLAG
 * Name: FLAGS_cublaslt_exhaustive_search_times
 * Since Version: 2.3.0
 * Value Range: int64_t, default=0
 * Example:
 * Note: Represents times of exhaustive search to evaluate performance of
 *       cuBlasLt matmul algorithm (with/without epilogue). Set this flag
 *       with value > 0 to enable exhaustive search. Default is 0, means
 *       getting algorithms via heuristic search. There are two search methods
 *       in cuBlasLt, heuristic search and exhaustive search. Exhaustive search
 *       attempts all cuBlasLt algorithms to select the fastest, which is very
 *       time-consuming, and the selected algorithm will be cached for a given
 *       layer specification Once you change the layer specifications
 *       (such as M, N and K), it will re-search again.
 */
PADDLE_DEFINE_EXPORTED_int64(
150 151
    cublaslt_exhaustive_search_times,
    0,
152 153 154 155
    "The times of exhaustive search for cuBlasLt matmul with/without "
    " epilogue algorithms, default is 0, means disabling exhaustive search.");
#endif

156
#if defined(PADDLE_WITH_ASCEND_CL)
Z
Zeng Jinle 已提交
157
PADDLE_DEFINE_EXPORTED_string(
158 159
    selected_npus,
    "",
Z
Zeng Jinle 已提交
160 161 162 163 164
    "A list of device ids separated by comma, like: 0,1,2,3. "
    "This option is useful when doing multi process training and "
    "each process have only one device (NPU). If you want to use "
    "all visible devices, set this to empty string.");
PADDLE_DEFINE_EXPORTED_bool(
165 166
    hccl_check_nan,
    true,
Z
Zeng Jinle 已提交
167 168 169
    "Check Nan in tensor before hccl_allreduce_sum otherwise it'll "
    "core when meets Nan value");
PADDLE_DEFINE_EXPORTED_string(
170 171
    npu_config_path,
    "",
172 173
    "The absolute path of configuration json file, like: /tmp/config.json. "
    "If proveided, it will be passed to aclInit().");
174 175
PADDLE_DEFINE_EXPORTED_int32(min_loss_scaling,
                             1,
Z
Zeng Jinle 已提交
176
                             "set minmum loss scaling value!");
A
Aganlengzi 已提交
177
PADDLE_DEFINE_EXPORTED_string(
178 179
    npu_precision_mode,
    "",
A
Aganlengzi 已提交
180 181 182 183 184
    "NPU operator precision mode, options are 'force_fp32', 'force_fp16', "
    "'allow_fp32_to_fp16', 'must_keep_origin_dtype' and "
    "'allow_mix_precision'. If you want to use the default mode ("
    "allow_fp32_to_fp16), set this to empty string. For more details, "
    "please refer to the documents");
185
#endif
186

187
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
188 189 190 191 192 193 194 195 196
/**
 * CUDNN related FLAG
 * Name: FLAGS_cudnn_deterministic
 * Since Version: 0.13.0
 * Value Range: bool, default=false
 * Example:
 * Note: whether to use deterministic algorithm in cudnn.
 *       If true, it will slow down some operators such as conv and pooling.
 */
Z
Zeng Jinle 已提交
197
PADDLE_DEFINE_EXPORTED_bool(
198 199
    cudnn_deterministic,
    false,
Z
Zeng Jinle 已提交
200 201 202
    "Whether allow using an autotuning algorithm for convolution "
    "operator. The autotuning algorithm may be non-deterministic. If "
    "true, the algorithm is deterministic.");
203

204 205 206 207
/**
 * CUDNN related FLAG
 * Name: FLAGS_conv_workspace_size_limit
 * Since Version: 0.13.0
208
 * Value Range: uint64, default=512 (MB)
209 210 211 212 213 214 215
 * Example:
 * Note: The internal function of cuDNN obtains the fastest matching algorithm
 *       within this memory limit. Usually, faster algorithms can be chosen in
 *       larger workspaces, but memory space can also be significantly
 * increased.
 *       Users need to balance memory and speed.
 */
216 217 218
PADDLE_DEFINE_EXPORTED_int64(conv_workspace_size_limit,
                             paddle::platform::kDefaultConvWorkspaceSizeLimitMB,
                             "cuDNN convolution workspace limit in MB unit.");
219

220 221 222 223 224 225 226 227 228 229 230 231 232 233
/**
 * CUDNN related FLAG
 * Name: FLAGS_cudnn_exhaustive_search
 * Since Version: 1.2.0
 * Value Range: bool, default=false
 * Example:
 * Note: Represents whether an exhaustive search method is used to
 *       select a convolution algorithm. There are two search methods in cuDNN,
 *       heuristic search and exhaustive search. Exhaustive search attempts
 *       all cuDNN algorithms to select the fastest. This method is very
 *       time-consuming, and the selected algorithm will be cached for a given
 *       layer specification. Once you change the layer specifications
 *       (such as batch size, feature map size), it will search again.
 */
Z
Zeng Jinle 已提交
234
PADDLE_DEFINE_EXPORTED_bool(
235 236
    cudnn_exhaustive_search,
    false,
Z
Zeng Jinle 已提交
237 238
    "Whether enable exhaustive search for cuDNN convolution or "
    "not, default is False.");
239

240 241 242 243 244 245 246 247
/**
 * CUDNN related FLAG
 * Name: FLAGS_cudnn_exhaustive_search_times
 * Since Version:
 * Value Range:
 * Example:
 * Note: only used to predict for advanced developer
 */
248 249
PADDLE_DEFINE_EXPORTED_int64(cudnn_exhaustive_search_times,
                             -1,
Z
Zeng Jinle 已提交
250 251
                             "Exhaustive search times for cuDNN convolution, "
                             "default is -1, not exhaustive search");
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
/**
 * CUDNN related FLAG
 * Name: FLAGS_cudnn_batchnorm_spatial_persistent
 * Since Version: 1.4.0
 * Value Range: bool, default=false
 * Example:
 * Note: CUDNN_BATCHNORM_SPATIAL_PERSISTENT in batchnorm. This mode can be
 * faster in
 *       some tasks because an optimized path may be selected for
 * CUDNN_DATA_FLOAT
 *       and CUDNN_DATA_HALF data types, compute capability 6.0 or higher. The
 *       reason we set it to false by default is that this mode may use scaled
 *       atomic integer reduction that may cause a numerical overflow for
 * certain
 *       input data range.
 */
Z
Zeng Jinle 已提交
269
PADDLE_DEFINE_EXPORTED_bool(
270 271
    cudnn_batchnorm_spatial_persistent,
    false,
Z
Zeng Jinle 已提交
272 273
    "Whether enable CUDNN_BATCHNORM_SPATIAL_PERSISTENT mode for cudnn "
    "batch_norm, default is False.");
274 275
#endif

276
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
277 278 279

/**
 * NCCL related FLAG
280 281 282
 * Name: FLAGS_sync_nccl_allreduce
 * Since Version: 1.3
 * Value Range: bool, default=true
283 284 285 286 287
 * Example:
 * Note: asynchronous nccl allreduce or synchronous issue:
 *       https://github.com/PaddlePaddle/Paddle/issues/15049
 *       If you want to change this default value, why?(gongwb)
 */
Z
Zeng Jinle 已提交
288
PADDLE_DEFINE_EXPORTED_bool(
289 290
    sync_nccl_allreduce,
    true,
291 292 293 294 295
    "If set true, will call `cudaStreamSynchronize(nccl_stream)`"
    "after allreduce, this mode can get better performance in some scenarios.");
#endif

#ifdef PADDLE_WITH_DISTRIBUTE
296 297 298 299 300 301 302 303 304 305 306
/**
 * Distributed related FLAG
 * Name: FLAGS_communicator_max_merge_var_num
 * Since Version: 1.5.0
 * Value Range: int32, default=20
 * Example:
 * Note: The maximum number of gradients to be merged into a gradient and
 *       sent through the communicator. The trainer puts all the gradients
 *       into the queue, and then the communicator takes the gradients out
 *       of the queue and sends them after merging.
 */
307 308
PADDLE_DEFINE_EXPORTED_int32(communicator_max_merge_var_num,
                             20,
Z
Zeng Jinle 已提交
309 310
                             "max var num to merge and send");
PADDLE_DEFINE_EXPORTED_bool(
311 312
    communicator_is_sgd_optimizer,
    true,
Z
Zeng Jinle 已提交
313 314
    "gradient sent to the server is the sum of the gradients "
    "calculated by each thread if optimizer is sgd");
315 316 317 318 319 320 321 322 323 324 325 326 327
/**
 * Distributed related FLAG
 * Name: FLAGS_communicator_send_queue_size
 * Since Version: 1.5.0
 * Value Range: int32, default=20
 * Example:
 * Note: Size for each gradient queue. The trainer puts the gradient into
 *       the queue, and then the communicator takes it out of the queue and
 *       sends it out. When the communicator is slow, the queue may be full,
 *       and the trainer will be continuously blocked before the queue has
 *       space. It is used to avoid training much faster than communication,
 *       so that too many gradients are not sent out in time.
 */
328 329
PADDLE_DEFINE_EXPORTED_int32(communicator_send_queue_size,
                             20,
Z
Zeng Jinle 已提交
330
                             "queue size to recv gradient before send");
331 332
#endif

333 334 335 336 337 338 339 340 341
/**
 * Distributed related FLAG
 * Name: FLAGS_dist_threadpool_size
 * Since Version: 1.0.0
 * Value Range: int32, default=0
 * Example:
 * Note: Control the number of threads used for distributed modules.
 *       If it is not set, it is set to a hard thread.
 */
Z
Zeng Jinle 已提交
342
PADDLE_DEFINE_EXPORTED_int32(
343 344
    dist_threadpool_size,
    0,
Z
Zeng Jinle 已提交
345
    "number of threads used for distributed executed.");
346

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
/**
 * Garbage collector related FLAG
 * Name: FLAGS_eager_delete_tensor_gb
 * Since Version: 1.0.0
 * Value Range: double, default=kDefaultEagerDeleteTensorGB
 * Example: FLAGS_eager_delete_tensor_gb=0.0, Release memory garbage once it is
 * no longer used.
 *          FLAGS_eager_delete_tensor_gb=1.0, Release memory garbage when
 * garbage occupies 1.0GB of memory.
 *          FLAGS_eager_delete_tensor_gb=-1.0, Disable garbage collection
 * policy.
 * Note: Represents whether a garbage collection strategy is used to optimize
 * network memory usage.
 *       It is recommended that users set FLAGS_eager_delete_tensor_gb=0.0 to
 *       enable garbage collection strategy when training large networks.
 */
363 364 365 366 367 368 369
// Disable gc by default when inference library is built
#ifdef PADDLE_ON_INFERENCE
static const double kDefaultEagerDeleteTensorGB = -1;
#else
static const double kDefaultEagerDeleteTensorGB = 0;
#endif

Z
Zeng Jinle 已提交
370
PADDLE_DEFINE_EXPORTED_double(
371 372
    eager_delete_tensor_gb,
    kDefaultEagerDeleteTensorGB,
373 374 375
    "Memory size threshold (GB) when the garbage collector clear tensors."
    "Disabled when this value is less than 0");

376 377 378 379 380 381 382 383 384 385 386 387
/**
 * Memory related FLAG
 * Name: FLAGS_fast_eager_deletion_mode
 * Since Version: 1.3.0
 * Value Range: bool, default=true
 * Example:
 * Note: Whether to use fast garbage collection strategy.
 *       If not set, the GPU memory is released at the end of the CUDA kernel.
 *       Otherwise, the GPU memory will be released before the CUDA kernel
 *       has finished, which will make the garbage collection strategy faster.
 *       Only works when garbage collection strategy is enabled.
 */
Z
Zeng Jinle 已提交
388
PADDLE_DEFINE_EXPORTED_bool(
389 390
    fast_eager_deletion_mode,
    true,
Z
Zeng Jinle 已提交
391 392
    "Fast eager deletion mode. If enabled, memory would release "
    "immediately without waiting GPU kernel ends.");
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
/**
 * Memory related FLAG
 * Name: FLAGS_memory_fraction_of_eager_deletion
 * Since Version: 1.4
 * Value Range: double [0.0, 1.0], default=1.0
 * Example:
 * Note: The percentage of memory size of garbage collection policy
 *       to release variables.
 *       If FLAGS_memory_fraction_of_eager_deletion = 1.0,
 *       all temporary variables in the network will be released.
 *       If FLAGS_memory_fraction_of_eager_deletion = 0.0,
 *       no temporary variables in the network are released.
 *       If 0.0 < FLAGS_memory_fraction_of_eager_deletion < 1.0,
 *       all temporary variables will be sorted in descending order
 *       according to their memory size, and only variables with the
 *       largest FLAGS_memory_fraction_of_eager_deletion ratio will be released.
 *       The flag is only valid when running parallel data compilers.
 */
Z
Zeng Jinle 已提交
412
PADDLE_DEFINE_EXPORTED_double(
413 414
    memory_fraction_of_eager_deletion,
    1.0,
Z
Zeng Jinle 已提交
415 416 417 418
    "Fraction of eager deletion. If less than 1.0, all variables in "
    "the program would be sorted according to its memory size, and "
    "only the FLAGS_memory_fraction_of_eager_deletion of the largest "
    "variables would be deleted.");
419

420 421 422 423
/**
 * Allocator related FLAG
 * Name: FLAGS_allocator_strategy
 * Since Version: 1.2
424 425
 * Value Range: string, {naive_best_fit, auto_growth, thread_local},
 * default=auto_growth
426
 * Example:
427
 * Note: For selecting allocator policy of PaddlePaddle.
428
 */
429
static constexpr char kDefaultAllocatorStrategy[] = "auto_growth";
Z
Zeng Jinle 已提交
430
PADDLE_DEFINE_EXPORTED_string(
431 432
    allocator_strategy,
    kDefaultAllocatorStrategy,
433 434 435 436 437 438 439 440 441 442 443
    "The allocation strategy, enum in [naive_best_fit, auto_growth]. "
    "naive_best_fit means the original pre-allocated allocator of Paddle. "
    "auto_growth means the auto-growth allocator. "
    "These two strategies differ in GPU memory allocation. "
    "naive_best_fit strategy would occupy almost all GPU memory by default, "
    "which prevents users from starting several Paddle jobs on the same GPU "
    "card but leads to less memory fragmentation (i.e., maximum batch "
    "size of models may be larger). auto_growth strategy would allocate "
    "GPU memory on demand, which allows users to start several Paddle jobs "
    "on the same GPU card but may lead to more memory fragmentation "
    "(i.e., maximum batch size of models may be smaller).");
444

445 446 447
/**
 * Memory related FLAG
 * Name: FLAGS_fraction_of_cpu_memory_to_use
448 449
 * Since Version: 0.12.0
 * Value Range: double, [0.0, 1.0], default=1
450
 * Example:
451 452 453 454 455 456
 * Note: Represents the proportion of allocated CPU memory blocks
 *       to the total memory size of the CPU. Future CPU memory usage
 *       will be allocated from this memory block. If the memory block does
 *       not have enough CUDA pinned memory, new memory blocks of the same
 *       size as the memory block will be allocated from the CUDA pinned
 *       request util the CPU does not have enough memory.
457
 */
458 459
PADDLE_DEFINE_EXPORTED_double(fraction_of_cpu_memory_to_use,
                              1,
Z
Zeng Jinle 已提交
460 461
                              "Default use 100% of CPU memory for PaddlePaddle,"
                              "reserve the rest for page tables, etc");
462 463 464 465 466 467 468 469 470 471 472 473 474

/**
 * Memory related FLAG
 * Name: FLAGS_initial_cpu_memory_in_mb
 * Since Version: 0.14.0
 * Value Range: uint64, default=500 (MB)
 * Example:
 * Note: The CPU memory block size of the initial allocator in MB.
 *       The allocator takes the minimum values of
 *       FLAGS_initial_cpu_memory_in_mb and
 *       FLAGS_fraction_of_cpu_memory_to_use*(total physical memory)
 *       as memory block sizes.
 */
Z
Zeng Jinle 已提交
475
PADDLE_DEFINE_EXPORTED_uint64(
476 477
    initial_cpu_memory_in_mb,
    500ul,
Z
Zeng Jinle 已提交
478
    "Initial CPU memory for PaddlePaddle, in MD unit.");
479

480 481 482
/**
 * Memory related FLAG
 * Name: FLAGS_fraction_of_cuda_pinned_memory_to_use
483 484
 * Since Version: 0.12.0
 * Value Range: double, [0.0, 1.0], default=0.5
485
 * Example:
486 487 488 489 490 491
 * Note: Represents the proportion of allocated CUDA pinned memory blocks
 *       to the total memory size of the CPU. Future CUDA pinned memory usage
 *       will be allocated from this memory block. If the memory block does
 *       not have enough CPU memory, new memory blocks of the same
 *       size as the memory block will be allocated from the CPU
 *       request util the CPU does not have enough memory.
492
 */
Z
Zeng Jinle 已提交
493
PADDLE_DEFINE_EXPORTED_double(
494 495
    fraction_of_cuda_pinned_memory_to_use,
    0.5,
496 497 498
    "Default use 50% of CPU memory as the pinned_memory for PaddlePaddle,"
    "reserve the rest for page tables, etc");

499 500
// NOTE(zhiqiu): better to share the flags, otherwise we will have too many
// flags.
501 502 503
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) ||      \
    defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_MLU) || \
    defined(PADDLE_WITH_CUSTOM_DEVICE)
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

/**
 * Memory related FLAG
 * Name: FLAGS_fraction_of_gpu_memory_to_use
 * Since Version: 1.2.0
 * Value Range: double, default=0.5 if win32, 0.92 else
 * Example:
 * Note: Represents the proportion of allocated memory blocks to the total
 * memory size
 *       of the GPU. Future memory usage will be allocated from this memory
 * block.
 *       If the memory block does not have enough GPU memory, new memory blocks
 * of
 *       the same size as the memory block will be allocated from the GPU
 * request
 *       until the GPU does not have enough memory.
 */

522 523 524 525 526 527 528 529
#ifndef _WIN32
constexpr static float fraction_of_gpu_memory_to_use = 0.92f;
#else
// fraction_of_gpu_memory_to_use cannot be too high on windows,
// since the win32 graphic sub-system can occupy some GPU memory
// which may lead to insufficient memory left for paddle
constexpr static float fraction_of_gpu_memory_to_use = 0.5f;
#endif
Z
Zeng Jinle 已提交
530
PADDLE_DEFINE_EXPORTED_double(
531 532
    fraction_of_gpu_memory_to_use,
    fraction_of_gpu_memory_to_use,
Z
Zeng Jinle 已提交
533 534 535 536 537
    "Allocate a trunk of gpu memory that is this fraction of the "
    "total gpu memory size. Future memory usage will be allocated "
    "from the trunk. If the trunk doesn't have enough gpu memory, "
    "additional trunks of the same size will be requested from gpu "
    "until the gpu has no memory left for another trunk.");
538

539 540 541 542 543 544 545 546 547 548 549 550
/**
 * Memory related FLAG
 * Name: FLAGS_initial_gpu_memory_in_mb
 * Since Version: 1.4.0
 * Value Range: uint64, default=0 (MB)
 * Example:
 * Note: Allocate a specified size of GPU memory block. Later memory usage
 *       will be allocated from that memory block. If the memory block does not
 *       have enough GPU memory, the memory block with the size
 *       FLAGS_reallocate_gpu_memory_in_mb will be requested from the GPU until
 *       the GPU has no remaining memory.
 */
Z
Zeng Jinle 已提交
551
PADDLE_DEFINE_EXPORTED_uint64(
552 553
    initial_gpu_memory_in_mb,
    0ul,
554 555 556 557 558 559 560 561 562 563 564
    "Allocate a trunk of gpu memory whose byte size is specified by "
    "the flag. Future memory usage will be allocated from the "
    "trunk. If the trunk doesn't have enough gpu memory, additional "
    "trunks of the gpu memory will be requested from gpu with size "
    "specified by FLAGS_reallocate_gpu_memory_in_mb until the gpu has "
    "no memory left for the additional trunk. Note: if you set this "
    "flag, the memory size set by "
    "FLAGS_fraction_of_gpu_memory_to_use will be overrided by this "
    "flag. If you don't set this flag, PaddlePaddle will use "
    "FLAGS_fraction_of_gpu_memory_to_use to allocate gpu memory");

565 566 567 568 569 570 571 572 573
/**
 * Memory related FLAG
 * Name: FLAGS_reallocate_gpu_memory_in_mb
 * Since Version: 1.4.0
 * Value Range: uint64, default=0 (MB)
 * Example:
 * Note: If the allocated GPU memory blocks are exhausted,
 *       additional GPU memory blocks are reallocated
 */
Z
Zeng Jinle 已提交
574
PADDLE_DEFINE_EXPORTED_uint64(
575 576
    reallocate_gpu_memory_in_mb,
    0ul,
Z
Zeng Jinle 已提交
577 578 579 580 581
    "If this flag is set, Paddle will reallocate the gpu memory with "
    "size specified by this flag. Else Paddle will reallocate by "
    "FLAGS_fraction_of_gpu_memory_to_use");

PADDLE_DEFINE_EXPORTED_uint64(
582 583
    gpu_memory_limit_mb,
    0UL,
Z
Zeng Jinle 已提交
584 585 586 587 588 589
    "The maximum gpu memory limit that the process can allocate. "
    "If it is equal to 0, there would be no limit and all gpu memory "
    "would be available to the process. If it is larger than 0, "
    "the process would raise out of memory error if the allocated "
    "memory exceeds the limit even though there is available "
    "memory on the gpu card. The unit is MB and default value is 0.");
590

591
#endif
592 593 594 595 596 597 598 599 600

/**
 * Scope related FLAG
 * Name: local_exe_sub_scope_limit
 * Since Version: 1.6.0
 * Value Range: double, default=256 (MB)
 * Example:
 * Note:
 */
Z
Zeng Jinle 已提交
601
PADDLE_DEFINE_EXPORTED_double(
602 603
    local_exe_sub_scope_limit,
    256.0,  // MBytes
Z
Zeng Jinle 已提交
604 605 606 607
    "The memory up limit of sub-scopes of local execution scope for "
    "each CUDAPlace. If you don't need to limit the memory, "
    "you should set FLAGS_local_exe_sub_scope_limit=-1. "
    "The default value is 256 MBytes.");
608

609
PADDLE_DEFINE_EXPORTED_bool(
610 611
    reader_queue_speed_test_mode,
    false,
612 613 614
    "If set true, the queue.pop will only get data from queue but not "
    "remove the data from queue for speed testing");

615 616 617 618 619 620 621 622
/**
 * MKLDNN related FLAG
 * Name: use_mkldnn
 * Since Version:
 * Value Range: bool, default=false
 * Example:
 * Note:
 */
Z
Zeng Jinle 已提交
623
PADDLE_DEFINE_EXPORTED_bool(use_mkldnn, false, "Use MKLDNN to run");
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638

/**
 * Debug related FLAG
 * Name: FLAGS_call_stack_level
 * Since Version: 2.0.0
 * Value Range: int, default=2
 * Example:
 * Note: Used to debug. Determine the call stack to print when error or
 * exeception happens.
 * If FLAGS_call_stack_level == 0, only the error message summary will be shown.
 * If FLAGS_call_stack_level == 1, the python stack and  error message summary
 * will be shown.
 * If FLAGS_call_stack_level == 2, the python stack, c++ stack, and error
 * message summary will be shown.
 */
639 640 641 642 643 644
#ifdef PADDLE_ON_INFERENCE
static const int32_t kDefaultCallStackLevel = 2;
#else
static const int32_t kDefaultCallStackLevel = 1;
#endif

Z
Zeng Jinle 已提交
645
PADDLE_DEFINE_EXPORTED_int32(
646 647
    call_stack_level,
    kDefaultCallStackLevel,
648 649 650 651 652 653 654 655
    "Determine the call stack to print when error or exeception happens."
    // TODO(zhiqiu): implement logic of FLAGS_call_stack_level==0
    // "If FLAGS_call_stack_level == 0, only the error message summary will be "
    // "shown. "
    "If FLAGS_call_stack_level == 1, the python stack and error message "
    "summary will be shown."
    "If FLAGS_call_stack_level == 2, the python stack, c++ stack, and "
    "error message summary will be shown.");
656 657 658 659 660 661 662 663 664 665

/**
 * Debug related FLAG
 * Name: sort_sum_gradient
 * Since Version: 2.0.0
 * Value Range: bool, default=false
 * Example:
 * Note: If True, gradients are summed by the reverse order of
 * the forward execution sequence.
 */
666 667
PADDLE_DEFINE_EXPORTED_bool(sort_sum_gradient,
                            false,
Z
Zeng Jinle 已提交
668 669
                            "Sum gradients by the reverse order of "
                            "the forward execution sequence.");
670 671 672 673 674 675 676 677 678

/**
 * Performance related FLAG
 * Name: max_inplace_grad_add
 * Since Version: 2.0.0
 * Value Range: int32, default=0
 * Example:
 * Note: The maximum number of inplace grad_add.
 */
Z
Zeng Jinle 已提交
679
PADDLE_DEFINE_EXPORTED_int32(
680 681
    max_inplace_grad_add,
    0,
682 683 684 685
    "The maximum number of inplace grad_add. When doing "
    "gradient accumulation, if the number of gradients need to that "
    "less FLAGS_max_inplace_grad_add, than it will be use several grad_add"
    "instead of sum. Default is 0.");
686 687 688 689 690 691 692 693 694

/**
 * Debug related FLAG
 * Name: tracer_mkldnn_ops_on
 * Since Version: 2.0.0
 * Value Range: string, default=empty
 * Example:
 * Note: Holds list of operation types with OneDNN kernels to be enabled.
 */
695 696
PADDLE_DEFINE_EXPORTED_string(tracer_mkldnn_ops_on,
                              "",
Z
Zeng Jinle 已提交
697
                              "List of OneDNN operation types to be turned on");
698 699 700 701 702 703 704 705 706

/**
 * Debug related FLAG
 * Name: tracer_mkldnn_ops_off
 * Since Version: 2.0.0
 * Value Range: string, default=empty
 * Example:
 * Note: Holds list of operation types with OneDNN kernels to be disabled.
 */
Z
Zeng Jinle 已提交
707
PADDLE_DEFINE_EXPORTED_string(
708 709
    tracer_mkldnn_ops_off,
    "",
Z
Zeng Jinle 已提交
710
    "List of OneDNN operation types to be turned off");
711

712 713 714 715 716 717 718 719 720
/**
 * Debug related FLAG
 * Name: check_kernel_launch
 * Since Version: 2.1.0
 * Value Range: bool, default=false
 * Example:
 * Note: Check kernel launch status after every kernel compute.
 */
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Z
Zeng Jinle 已提交
721
PADDLE_DEFINE_EXPORTED_bool(
722 723
    check_kernel_launch,
    false,
Z
Zeng Jinle 已提交
724
    "Check kernel launch status after every kernel compute");
725 726
#endif

727 728 729 730 731 732 733 734 735
/**
 * CUDNN related FLAG
 * Name: conv2d_disable_cudnn
 * Since Version:
 * Value Range: bool, default=false
 * Example:
 * Note: Disable cudnn in conv2d.
 */
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
736 737
PADDLE_DEFINE_EXPORTED_bool(conv2d_disable_cudnn,
                            false,
Z
Zeng Jinle 已提交
738
                            "Disable cudnn in conv2d");
739

740 741
PADDLE_DEFINE_EXPORTED_bool(use_fast_math,
                            false,
742
                            "Whether to use fast math GPU functions.");
743
#endif
B
Baibaifan 已提交
744 745 746 747 748 749 750 751 752

/**
 * Distributed related FLAG
 * Name: FLAGS_get_host_by_name_time
 * Since Version: 2.2.0
 * Value Range: int32, default=120
 * Example:
 * Note: Get host by name time.
 */
F
fwenguang 已提交
753 754 755
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_XPU) ||      \
    defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_HIP) || \
    defined(PADDLE_WITH_MLU)
756 757
PADDLE_DEFINE_EXPORTED_int32(get_host_by_name_time,
                             120,
Z
Zeng Jinle 已提交
758
                             "The maximum time for get host by name time");
B
Baibaifan 已提交
759
#endif
760 761 762 763 764 765 766 767 768 769

/**
 * Distributed related FLAG
 * Name: FLAGS_apply_pass_to_program
 * Since Version: 2.2.0
 * Value Range: bool, default=false
 * Example: FLAGS_apply_pass_to_program=true would apply IR Pass to
 *          program when using Fleet APIs.
 * Note: Apply IR pass to program. Be only useful when using Fleet APIs.
 */
Z
Zeng Jinle 已提交
770
PADDLE_DEFINE_EXPORTED_bool(
771 772
    apply_pass_to_program,
    false,
773
    "It controls whether to apply IR pass to program when using Fleet APIs");
Y
yaoxuefeng 已提交
774

F
Feng Xing 已提交
775
/**
L
Liu-xiandong 已提交
776
 * KP kernel related FLAG
F
Feng Xing 已提交
777 778 779
 * Name: FLAGS_run_kp_kernel
 * Since Version: 2.3.0
 * Value Range: bool, default=false
L
Liu-xiandong 已提交
780 781
 * Example: FLAGS_run_kp_kernel=true would use the kp kernel to compute in the
 * Op.
F
Feng Xing 已提交
782 783
 * Note:
 */
784 785
PADDLE_DEFINE_EXPORTED_bool(run_kp_kernel,
                            false,
L
Liu-xiandong 已提交
786
                            "It controls whether to run PaddlePaddle using KP");
F
Feng Xing 已提交
787

788
/**
789 790 791 792 793 794 795 796 797 798
 * Distributed related FLAG
 * Name: FLAGS_allreduce_record_one_event
 * Since Version: 2.2.0
 * Value Range: bool, default=false
 * Example: FLAGS_allreduce_record_one_event=true makes the allreduce
 *          operations would only wait one event instead of multiple events.
 * Note: Make the allreduce operations would only wait one event instead of
 *       multiple events. Currently, only fuse allreduce supports this.
 *       Otherwise, the precision may be wrong.
 */
799 800
PADDLE_DEFINE_EXPORTED_bool(allreduce_record_one_event,
                            false,
801 802 803 804 805
                            "It controls whether the allreduce operations "
                            "would only wait one event instead of multiple "
                            "events. Currently, only fuse allreduce supports "
                            "this. Otherwise, the precision may be wrong.");

806
#ifdef PADDLE_WITH_CINN
807
/*
808 809 810 811 812 813 814 815
 * CINN related FLAG
 * Name: FLAGS_use_cinn
 * Since Version: 2.3
 * Value Range: bool, default=false
 * Example: FLAGS_use_cinn=true would run PaddlePaddle using CINN
 */
PADDLE_DEFINE_EXPORTED_bool(
    use_cinn, false, "It controls whether to run PaddlePaddle using CINN");
816 817 818 819 820 821 822 823 824

/*
 * CINN related FLAG
 * Name: FLAGS_allow_cinn_ops
 * Since Version: 2.3
 * Value Range: string, default=""
 * Example: FLAGS_allow_cinn_ops="mul;relu" would only cover `mul` and `relu`
 * when using CINN
 */
825 826
PADDLE_DEFINE_EXPORTED_string(allow_cinn_ops,
                              "",
827 828 829 830 831 832 833 834 835 836 837
                              "It controls the cinn op subset to be used, "
                              "which has the highest priority.");

/*
 * CINN related FLAG
 * Name: FLAGS_deny_cinn_ops
 * Since Version: 2.3
 * Value Range: string, default=""
 * Example: FLAGS_deny_cinn_ops="mul;relu" would block `mul` and `relu` two ops
 * when using CINN
 */
838 839
PADDLE_DEFINE_EXPORTED_string(deny_cinn_ops,
                              "",
840
                              "It controls the cinn op subset to be not used.");
841 842 843 844 845 846 847 848 849 850

/*
 * CINN related FLAG
 * Name: FLAGS_enable_pe_launch_cinn
 * Since Version: 2.3
 * Value Range: bool, default=true
 * Example: FLAGS_enable_pe_launch_cinn=true would execute the CINN compiled
 * instructions of a paddle graph with ParallelExecutor, otherwise with the
 * CINN compiled runtime program in sequential order.
 */
851 852
PADDLE_DEFINE_EXPORTED_bool(enable_pe_launch_cinn,
                            true,
853 854 855 856 857 858 859 860 861 862 863
                            "It controls whether to execute cinn compiled "
                            "program with ParallelExecutor");

/*
 * CINN related FLAG
 * Name: FLAGS_enable_cinn_auto_tune
 * Since Version: 2.3
 * Value Range: bool, default=false
 * Example: FLAGS_enable_cinn_auto_tune=true would use CINN with its
 * auto-tune feature enabled
 */
864 865
PADDLE_DEFINE_EXPORTED_bool(enable_cinn_auto_tune,
                            false,
866 867 868
                            "It controls whether to use cinn with "
                            "its auto-tune feature enabled");

869
#endif
870

871 872
DEFINE_int32(record_pool_max_size,
             2000000,
Y
yaoxuefeng 已提交
873 874
             "SlotRecordDataset slot record pool max size");
DEFINE_int32(slotpool_thread_num, 1, "SlotRecordDataset slot pool thread num");
875 876
DEFINE_bool(enable_slotpool_wait_release,
            false,
Y
yaoxuefeng 已提交
877
            "enable slotrecord obejct wait release, default false");
878 879
DEFINE_bool(enable_slotrecord_reset_shrink,
            false,
Y
yaoxuefeng 已提交
880
            "enable slotrecord obejct reset shrink memory, default false");
881 882
DEFINE_bool(enable_ins_parser_file,
            false,
Y
yaoxuefeng 已提交
883
            "enable parser ins file , default false");
884 885 886 887 888 889 890 891 892 893 894 895

/**
 * ProcessGroupNCCL related FLAG
 * Name: nccl_blocking_wait
 * Since Version:
 * Value Range: bool, default=false
 * Example:
 * Note: nccl blocking wait.
 */
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PADDLE_DEFINE_EXPORTED_bool(nccl_blocking_wait, false, "nccl blocking wait");
#endif
896 897 898 899 900 901 902 903 904

/**
 * Autotune related FLAG
 * Name: FLAGS_use_autotune
 * Since Version: 2.3.0
 * Value Range: bool, default=false
 * Example:
 */
PADDLE_DEFINE_EXPORTED_bool(use_autotune, false, "Whether enable autotune.");
905 906 907 908 909 910 911 912 913 914 915

/**
 * Preformance related FLAG
 * Name: einsum_opt
 * Since Version: 2.3.0
 * Value Range: bool, default=false
 * Example:
 * Note: If True, EinsumOp will be optimimzed by innercache reuse, which
 * uses more gpu memory.
 */
PADDLE_DEFINE_EXPORTED_bool(
916 917
    einsum_opt,
    false,
918
    "EinsumOp backward will be speedup at the expense of more gpu memory.");
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933

/**
 * JitLayer related FLAG
 * Name: FLAGS_jit_engine_type
 * Since Version: 2.3.0
 * Value Range: string, {Executor, PE},
 * default=PE
 * Example:
 * Note:
 * FLAGS_jit_engine_type == Executor, using ExecutorFunction by default
 * FLAGS_jit_engine_type == PE, using PEFunction by default
 */
PADDLE_DEFINE_EXPORTED_string(jit_engine_type,
                              "PE",
                              "Choose default funciton type in JitLayer.");