test_matmul_v2_op.py 21.6 KB
Newer Older
S
ShenLiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
19 20
from op_test import OpTest, convert_float_to_uint16, get_numeric_gradient
from paddle.fluid.tests.unittests.testsuite import create_op
S
ShenLiang 已提交
21 22 23 24 25
import paddle.fluid.core as core

import paddle
import paddle.fluid as fluid
import paddle.fluid.framework as framework
26
from paddle.fluid.framework import _test_eager_guard
S
ShenLiang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69


def reference_matmul(X, Y, transpose_X=False, transpose_Y=False):
    """Reference forward implementation using np.matmul."""
    # np.matmul does not support the transpose flags, so we manually
    # transpose X and Y appropriately.
    if transpose_X:
        if X.ndim == 1:
            X = X.reshape((X.size, ))
        elif X.ndim == 2:
            X = X.T
        else:
            dim = [i for i in range(len(X.shape))]
            dim[-1], dim[len(X.shape) - 2] = dim[len(X.shape) - 2], dim[-1]
            X = np.transpose(X, tuple(dim))
    if transpose_Y:
        if Y.ndim == 1:
            Y = Y.reshape((Y.size, ))
        else:
            dim = [i for i in range(len(Y.shape))]
            dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1]
            Y = np.transpose(Y, tuple(dim))

    Out = np.matmul(X, Y)
    if not Out.shape:
        # We do not support 0-dimensional Tensors (scalars). So where
        # np.matmul outputs a scalar, we must convert to a Tensor of
        # shape (1, ) instead.
        # Everywhere else, we are compatible with np.matmul.
        Out = np.array([Out], dtype="float64")
    return Out


class TestMatMulV2Op(OpTest):
    """
    case 1
    """

    def config(self):
        self.x_shape = (100, )
        self.y_shape = (100, )
        self.trans_x = False
        self.trans_y = False
S
ShenLiang 已提交
70 71

    def init_kernel_type(self):
72
        self.dtype = "float32" if core.is_compiled_with_rocm() else "float64"
S
ShenLiang 已提交
73 74

    def setUp(self):
S
ShenLiang 已提交
75
        self.init_kernel_type()
S
ShenLiang 已提交
76 77
        self.config()
        self.op_type = "matmul_v2"
78 79 80 81 82 83 84 85 86
        if self.is_bfloat16_op():
            x = np.random.random(self.x_shape).astype(np.float32)
            y = np.random.random(self.y_shape).astype(np.float32)
        else:
            x = np.random.random(self.x_shape).astype(self.dtype)
            y = np.random.random(self.y_shape).astype(self.dtype)
            # -0.1 ~ 0.1
            x = -0.1 + 0.2 * x
            y = -0.1 + 0.2 * y
S
ShenLiang 已提交
87
        result = reference_matmul(x, y, self.trans_x, self.trans_y)
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
        if self.is_bfloat16_op():
            result = result.astype(np.float32)
            self.inputs = {
                'X': convert_float_to_uint16(x),
                'Y': convert_float_to_uint16(y),
            }
            self.inputs_fp32 = {
                'X': x,
                'Y': y,
            }
        else:
            result = result.astype(self.dtype)
            self.inputs = {
                'X': x,
                'Y': y,
            }
S
ShenLiang 已提交
104 105 106 107
        self.attrs = {'trans_x': self.trans_x, 'trans_y': self.trans_y}
        self.outputs = {'Out': result}

    def test_check_output(self):
108
        self.check_output(check_eager=False)
S
ShenLiang 已提交
109 110

    def test_check_grad(self):
111
        if core.is_compiled_with_rocm():
112 113 114 115
            self.check_grad(['X', 'Y'],
                            'Out',
                            max_relative_error=1e-2,
                            check_eager=False)
116
        else:
117
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
S
ShenLiang 已提交
118 119


120
class TestMatMulOp2(TestMatMulV2Op):
S
ShenLiang 已提交
121 122 123 124 125 126 127 128 129 130 131
    """
    case 2
    """

    def config(self):
        self.x_shape = (100, )
        self.y_shape = (1, 3, 2, 100)
        self.trans_x = False
        self.trans_y = True


132
class TestMatMulOp3(TestMatMulV2Op):
S
ShenLiang 已提交
133 134 135 136 137 138 139 140 141 142 143
    """
    case 3
    """

    def config(self):
        self.x_shape = (100, )
        self.y_shape = (1, 1, 100, 2)
        self.trans_x = False
        self.trans_y = False


144
class TestMatMulOp4(TestMatMulV2Op):
S
ShenLiang 已提交
145 146 147 148 149 150 151 152 153 154 155
    """
    case 4
    """

    def config(self):
        self.x_shape = (100, )
        self.y_shape = (1, 2, 100, 2)
        self.trans_x = False
        self.trans_y = False


156
class TestMatMulOp5(TestMatMulV2Op):
S
ShenLiang 已提交
157 158 159 160 161
    """
    case 5
    """

    def config(self):
S
ShenLiang 已提交
162
        self.x_shape = (1, 1, 100, 1)
S
ShenLiang 已提交
163 164 165 166 167
        self.y_shape = (100, )
        self.trans_x = True
        self.trans_y = False


168
class TestMatMulOp6(TestMatMulV2Op):
S
ShenLiang 已提交
169 170 171 172 173
    """
    case 6
    """

    def config(self):
174 175
        self.x_shape = (1, 2, 102, 1)
        self.y_shape = (102, )
S
ShenLiang 已提交
176 177 178 179
        self.trans_x = True
        self.trans_y = False


180
class TestMatMulOp7(TestMatMulV2Op):
S
ShenLiang 已提交
181 182 183 184 185 186 187 188 189 190 191
    """
    case 7
    """

    def config(self):
        self.x_shape = (1, 2, 1, 100)
        self.y_shape = (100, )
        self.trans_x = False
        self.trans_y = False


192
class TestMatMulOp8(TestMatMulV2Op):
S
ShenLiang 已提交
193 194 195 196 197 198 199 200 201 202 203
    """
    case 8
    """

    def config(self):
        self.x_shape = (1, 1, 2, 100)
        self.y_shape = (1, 1, 100, 2)
        self.trans_x = False
        self.trans_y = False


204
class TestMatMulOp9(TestMatMulV2Op):
S
ShenLiang 已提交
205 206 207 208 209 210 211 212 213 214 215
    """
    case 9
    """

    def config(self):
        self.x_shape = (1, 1, 1, 100)
        self.y_shape = (2, 1, 2, 100)
        self.trans_x = False
        self.trans_y = True


216
class TestMatMulOp10(TestMatMulV2Op):
S
ShenLiang 已提交
217 218 219 220 221
    """
    case 10
    """

    def config(self):
S
ShenLiang 已提交
222 223
        self.x_shape = (1, 1, 25, 4)
        self.y_shape = (1, 2, 4, 25)
S
ShenLiang 已提交
224 225 226 227
        self.trans_x = False
        self.trans_y = False


228
class TestMatMulOp11(TestMatMulV2Op):
S
ShenLiang 已提交
229 230 231 232 233 234 235 236 237 238 239
    """
    case 11
    """

    def config(self):
        self.x_shape = (2, 1, 2, 100)
        self.y_shape = (1, 1, 100, 2)
        self.trans_x = False
        self.trans_y = False


240
class TestMatMulOp12(TestMatMulV2Op):
S
ShenLiang 已提交
241 242 243 244 245
    """
    case 12
    """

    def config(self):
S
ShenLiang 已提交
246 247
        self.x_shape = (2, 1, 4, 25)
        self.y_shape = (1, 1, 4, 25)
S
ShenLiang 已提交
248 249 250 251
        self.trans_x = True
        self.trans_y = False


252
class TestMatMulOp13(TestMatMulV2Op):
S
ShenLiang 已提交
253 254 255 256 257
    """
    case 13
    """

    def config(self):
S
ShenLiang 已提交
258 259
        self.x_shape = (2, 2, 10, 10)
        self.y_shape = (2, 2, 10, 10)
S
ShenLiang 已提交
260 261 262 263
        self.trans_x = True
        self.trans_y = False


264
class TestMatMulOp14(TestMatMulV2Op):
S
ShenLiang 已提交
265 266 267 268 269
    """
    case 14_1
    """

    def config(self):
270 271
        self.x_shape = (3, 1, 6, 6)
        self.y_shape = (1, 2, 6, 9)
S
ShenLiang 已提交
272 273 274 275
        self.trans_x = True
        self.trans_y = False


276
class TestMatMulOp15(TestMatMulV2Op):
S
ShenLiang 已提交
277 278 279 280 281
    """
    case 14_2
    """

    def config(self):
282 283
        self.x_shape = (3, 1, 6, 6)
        self.y_shape = (1, 2, 6, 9)
S
ShenLiang 已提交
284 285 286 287
        self.trans_x = False
        self.trans_y = False


288
class TestMatMulOp16(TestMatMulV2Op):
S
ShenLiang 已提交
289 290 291 292 293 294
    """
    case 16 : to check the gradient for special case
    """

    def config(self):
        self.x_shape = (100)
S
ShenLiang 已提交
295
        self.y_shape = (1, 2, 2, 100, 2)
S
ShenLiang 已提交
296 297 298 299
        self.trans_x = False
        self.trans_y = False


300
class TestMatMulOp17(TestMatMulV2Op):
S
ShenLiang 已提交
301 302 303 304 305 306 307 308 309
    """
    case 17 : to check the gradient for special case
    """

    def config(self):
        self.x_shape = (2, 1, 100)
        self.y_shape = (100)
        self.trans_x = False
        self.trans_y = False
S
ShenLiang 已提交
310 311


312
class TestMatMulOpBroadcast1(TestMatMulV2Op):
313 314 315 316 317 318 319 320 321 322 323
    """
    case 14_3
    """

    def config(self):
        self.x_shape = (3, 1, 10, 10)
        self.y_shape = (1, 2, 10, 10)
        self.trans_x = True
        self.trans_y = True


324
class TestMatMulOpBroadcast2(TestMatMulV2Op):
325 326 327 328 329 330 331 332 333 334 335
    """
    case 14_4
    """

    def config(self):
        self.x_shape = (3, 1, 10, 10)
        self.y_shape = (1, 2, 10, 10)
        self.trans_x = False
        self.trans_y = True


S
ShenLiang 已提交
336 337 338 339
#--------------------test matmul fp16--------------------


def create_test_fp16_class(parent, atol=0.001, max_relative_error=1.0):
340

S
ShenLiang 已提交
341 342 343
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestMatMulOpFp16Case(parent):
344

S
ShenLiang 已提交
345 346 347 348 349 350 351
        def init_kernel_type(self):
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
352 353 354
                    self.check_output_with_place(place,
                                                 atol=atol,
                                                 check_eager=False)
S
ShenLiang 已提交
355 356 357 358 359 360 361

        def test_check_grad(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_grad_with_place(
                    place, ['X', 'Y'],
                    'Out',
362
                    max_relative_error=max_relative_error,
363
                    check_eager=False)
S
ShenLiang 已提交
364 365 366 367 368 369 370

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestMatMulOpFp16Case.__name__ = cls_name
    globals()[cls_name] = TestMatMulOpFp16Case


create_test_fp16_class(TestMatMulV2Op)
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
create_test_fp16_class(TestMatMulOp2)
create_test_fp16_class(TestMatMulOp3)
create_test_fp16_class(TestMatMulOp4)
create_test_fp16_class(TestMatMulOp5)
create_test_fp16_class(TestMatMulOp6)
create_test_fp16_class(TestMatMulOp7)
create_test_fp16_class(TestMatMulOp8)
create_test_fp16_class(TestMatMulOp9)
create_test_fp16_class(TestMatMulOp10)
create_test_fp16_class(TestMatMulOp11)
create_test_fp16_class(TestMatMulOp12)
create_test_fp16_class(TestMatMulOp13)
create_test_fp16_class(TestMatMulOp14)
create_test_fp16_class(TestMatMulOp15)
create_test_fp16_class(TestMatMulOp16)
create_test_fp16_class(TestMatMulOp17)

#--------------------test matmul bf16--------------------


def create_test_bf16_class(parent, atol=0.01):
392

393
    @unittest.skipIf(
394 395
        not core.is_compiled_with_cuda()
        or not core.is_bfloat16_supported(core.CUDAPlace(0)),
396
        "core is not compiled with CUDA and not support the bfloat16")
397
    class TestMatMulOpBf16Case(parent):
398

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
        def get_numeric_grad(self, place, check_name):
            scope = core.Scope()
            self._check_grad_helper()
            op = create_op(scope, self.op_type, self.inputs, self.outputs,
                           self.attrs)
            return get_numeric_gradient(place, scope, op, self.inputs_fp32,
                                        check_name, ['Out'])

        def init_kernel_type(self):
            self.dtype = np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=atol)

        def test_check_grad_x(self):
            place = core.CUDAPlace(0)
            numeric_grads = self.get_numeric_grad(place, 'X')
417 418 419 420
            self.check_grad_with_place(place, ['X'],
                                       'Out',
                                       no_grad_set=set(['Y']),
                                       user_defined_grads=[numeric_grads])
421 422 423 424

        def test_check_grad_y(self):
            place = core.CUDAPlace(0)
            numeric_grads = self.get_numeric_grad(place, 'Y')
425 426 427 428
            self.check_grad_with_place(place, ['Y'],
                                       'Out',
                                       no_grad_set=set(['X']),
                                       user_defined_grads=[numeric_grads])
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

        def test_check_grad(self):
            pass

    cls_name = "{0}_{1}".format(parent.__name__, "Bf16")
    TestMatMulOpBf16Case.__name__ = cls_name
    globals()[cls_name] = TestMatMulOpBf16Case


create_test_bf16_class(TestMatMulV2Op)
create_test_bf16_class(TestMatMulOp2)
create_test_bf16_class(TestMatMulOp3)
create_test_bf16_class(TestMatMulOp4)
create_test_bf16_class(TestMatMulOp5)
create_test_bf16_class(TestMatMulOp6)
create_test_bf16_class(TestMatMulOp7)
create_test_bf16_class(TestMatMulOp8)
create_test_bf16_class(TestMatMulOp9)
create_test_bf16_class(TestMatMulOp10)
create_test_bf16_class(TestMatMulOp11)
create_test_bf16_class(TestMatMulOp12)
create_test_bf16_class(TestMatMulOp13)
create_test_bf16_class(TestMatMulOp14)
create_test_bf16_class(TestMatMulOp15)
create_test_bf16_class(TestMatMulOp16)
create_test_bf16_class(TestMatMulOp17)
S
ShenLiang 已提交
455 456 457


class TestMatMulV2API(unittest.TestCase):
458

S
ShenLiang 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
    def setUp(self):
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = fluid.data(name="input_x", shape=[4, 3], dtype="float32")
            input_y = fluid.data(name="input_y", shape=[3, 4], dtype="float32")

            result = paddle.matmul(input_x, input_y)

            x_np = np.random.random([4, 3]).astype("float32")
            y_np = np.random.random([3, 4]).astype("float32")

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
476 477 478 479
                              feed={
                                  "input_x": x_np,
                                  "input_y": y_np
                              },
S
ShenLiang 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
                              fetch_list=[result])

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_x = np.random.random([4, 3]).astype("float64")
                input_y = np.random.random([3, 4]).astype("float64")
                x = paddle.to_tensor(input_x)
                y = paddle.to_tensor(input_y)
                result = paddle.matmul(x, y)

S
ShenLiang 已提交
495 496 497 498 499 500 501 502 503 504 505
    def test_dygraph_fp16(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                with fluid.dygraph.guard(place):
                    input_x = np.random.random([4, 3]).astype("float16")
                    input_y = np.random.random([3, 4]).astype("float16")
                    x = paddle.to_tensor(input_x)
                    y = paddle.to_tensor(input_y)
                    result = paddle.matmul(x, y)

506 507 508 509 510
    def test_compute_type_fp32(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                with fluid.dygraph.guard(place):
511 512
                    paddle.set_flags(
                        {'FLAGS_gemm_use_half_precision_compute_type': False})
513 514 515 516 517 518 519 520 521 522 523 524 525 526
                    input_x = np.random.random([2, 8, 16]).astype("float16")
                    input_y = np.random.random([2, 16, 8]).astype("float16")
                    for i in range(0, 16, 2):
                        input_x[:, :, i] += 60000
                        input_x[:, :, i + 1] -= 60000
                    input_y[:, :, :] = 1.5

                    x = paddle.to_tensor(input_x)
                    y = paddle.to_tensor(input_y)
                    result = paddle.matmul(x, y)
                    result_np = np.matmul(input_x, input_y)
                    self.assertTrue(paddle.isfinite(result)[0, 0, 0])
                    self.assertTrue(np.isfinite(result_np)[0, 0, 0])
                    self.assertTrue(np.array_equal(result_np, result.numpy()))
527 528
                    paddle.set_flags(
                        {'FLAGS_gemm_use_half_precision_compute_type': True})
529 530 531 532 533 534

    def test_compute_type_fp16_nan(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                with fluid.dygraph.guard(place):
535 536
                    paddle.set_flags(
                        {'FLAGS_gemm_use_half_precision_compute_type': True})
537 538 539 540 541 542 543 544 545 546 547 548 549 550
                    input_x = np.random.random([2, 8, 16]).astype("float16")
                    input_y = np.random.random([2, 16, 8]).astype("float16")
                    for i in range(0, 16, 2):
                        input_x[:, :, i] += 60000
                        input_x[:, :, i + 1] -= 60000
                    input_y[:, :, :] = 1.5

                    x = paddle.to_tensor(input_x)
                    y = paddle.to_tensor(input_y)
                    result = paddle.matmul(x, y)
                    result_np = np.matmul(input_x, input_y)
                    self.assertFalse(
                        paddle.isfinite(result)[0, 0, 0])  # contains nan/inf
                    self.assertTrue(np.isfinite(result_np)[0, 0, 0])
551 552
                    paddle.set_flags(
                        {'FLAGS_gemm_use_half_precision_compute_type': False})
553

554 555 556 557 558
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_dygraph()
            self.test_dygraph_fp16()

S
ShenLiang 已提交
559

C
chentianyu03 已提交
560
class TestComplexMatMulOp(OpTest):
561

C
chentianyu03 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
    def setUp(self):
        self.op_type = "matmul_v2"
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(
            (10, 10)).astype(self.dtype) + 1J * np.random.random(
                (10, 10)).astype(self.dtype)
        self.y = np.random.random(
            (10, 10)).astype(self.dtype) + 1J * np.random.random(
                (10, 10)).astype(self.dtype)
        self.out = np.dot(self.x, self.y)

    def init_grad_input_output(self):
        self.grad_out = np.ones((10, 10), self.dtype) + 1J * np.ones(
            (10, 10), self.dtype)
        self.grad_x = np.matmul(self.grad_out, np.conj(self.y).T)
        self.grad_y = np.matmul(np.conj(self.x).T, self.grad_out)

    def test_check_output(self):
594
        self.check_output(check_eager=False)
C
chentianyu03 已提交
595 596

    def test_check_grad_normal(self):
597 598 599 600 601
        self.check_grad(['X', 'Y'],
                        'Out',
                        user_defined_grads=[self.grad_x, self.grad_y],
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=False)
C
chentianyu03 已提交
602 603

    def test_check_grad_ingore_x(self):
604 605 606 607 608 609
        self.check_grad(['Y'],
                        'Out',
                        no_grad_set=set("X"),
                        user_defined_grads=[self.grad_y],
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=False)
C
chentianyu03 已提交
610 611

    def test_check_grad_ingore_y(self):
612 613 614 615 616 617
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Y'),
                        user_defined_grads=[self.grad_x],
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=False)
C
chentianyu03 已提交
618 619 620


class TestComplexMatMulOpBroadcast(OpTest):
621

C
chentianyu03 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
    def setUp(self):
        self.op_type = "matmul_v2"
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(
            (10, 2, 5)).astype(self.dtype) + 1J * np.random.random(
                (10, 2, 5)).astype(self.dtype)
        self.y = np.random.random(
            (5, 20)).astype(self.dtype) + 1J * np.random.random(
                (5, 20)).astype(self.dtype)
        self.out = np.dot(self.x, self.y)

    def init_grad_input_output(self):
        self.grad_out = np.ones((10, 2, 20), self.dtype) + 1J * np.ones(
            (10, 2, 20), self.dtype)
        self.grad_x = np.matmul(self.grad_out, np.conj(self.y).T)
        self.grad_y = np.sum(np.matmul(
            np.conj(self.x).transpose(0, 2, 1), self.grad_out),
                             axis=0)

    def test_check_output(self):
656
        self.check_output(check_eager=False)
C
chentianyu03 已提交
657 658

    def test_check_grad_normal(self):
659 660 661 662 663
        self.check_grad(['X', 'Y'],
                        'Out',
                        user_defined_grads=[self.grad_x, self.grad_y],
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=False)
C
chentianyu03 已提交
664 665

    def test_check_grad_ingore_x(self):
666 667 668 669 670 671
        self.check_grad(['Y'],
                        'Out',
                        no_grad_set=set("X"),
                        user_defined_grads=[self.grad_y],
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=False)
C
chentianyu03 已提交
672 673

    def test_check_grad_ingore_y(self):
674 675 676 677 678 679
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Y'),
                        user_defined_grads=[self.grad_x],
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=False)
C
chentianyu03 已提交
680 681


C
chentianyu03 已提交
682
class TestMatMulTypePromotion(TestComplexMatMulOp):
683

C
chentianyu03 已提交
684 685 686 687 688 689 690 691 692 693 694 695 696 697
    def init_input_output(self):
        self.x = np.random.random((10, 10)).astype(self.dtype)
        self.y = np.random.random(
            (10, 10)).astype(self.dtype) + 1J * np.random.random(
                (10, 10)).astype(self.dtype)
        self.out = np.dot(self.x, self.y)

    def init_grad_input_output(self):
        self.grad_out = np.ones((10, 10), self.dtype) + 1J * np.ones(
            (10, 10), self.dtype)
        self.grad_x = np.matmul(self.grad_out, np.conj(self.y).T).real
        self.grad_y = np.matmul(np.conj(self.x).T, self.grad_out)


S
ShenLiang 已提交
698
if __name__ == "__main__":
C
chentianyu03 已提交
699
    paddle.enable_static()
S
ShenLiang 已提交
700
    unittest.main()