test_dropout_op.py 45.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
K
Kexin Zhao 已提交
19
import paddle.fluid.core as core
20
from op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
21
import paddle
22
import paddle.static as static
23 24
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
25
from paddle.fluid.framework import _test_eager_guard, _enable_legacy_dygraph
26
import os
27

H
hong 已提交
28 29
from paddle import _C_ops

30

31
class TestDropoutOp(OpTest):
32

33
    def setUp(self):
34
        self.op_type = "dropout"
35
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
36
        self.attrs = {'dropout_prob': 0.0, 'fix_seed': True, 'is_test': False}
Y
Yu Yang 已提交
37 38
        self.outputs = {
            'Out': self.inputs['X'],
Z
Zeng Jinle 已提交
39
            'Mask': np.ones((32, 64)).astype('uint8')
Y
Yu Yang 已提交
40
        }
41

42 43 44 45
    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
46
        self.check_grad(['X'], 'Out')
47 48


49
class TestDropoutOpInput1d(OpTest):
50

51 52
    def setUp(self):
        self.op_type = "dropout"
53
        self.inputs = {'X': np.random.random((2000, )).astype("float32")}
54 55 56 57 58 59 60 61 62 63 64 65 66
        self.attrs = {'dropout_prob': 0.0, 'fix_seed': True, 'is_test': False}
        self.outputs = {
            'Out': self.inputs['X'],
            'Mask': np.ones((2000)).astype('uint8')
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out')


67
class TestDropoutOp2(TestDropoutOp):
68

69
    def setUp(self):
70
        self.op_type = "dropout"
71
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
72
        self.attrs = {'dropout_prob': 1.0, 'fix_seed': True, 'is_test': False}
Y
Yu Yang 已提交
73 74
        self.outputs = {
            'Out': np.zeros((32, 64)).astype('float32'),
Z
Zeng Jinle 已提交
75
            'Mask': np.zeros((32, 64)).astype('uint8')
Y
Yu Yang 已提交
76
        }
77 78


79
class TestDropoutOp3(TestDropoutOp):
80

81
    def setUp(self):
82 83
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64, 2)).astype("float32")}
84
        self.attrs = {'dropout_prob': 0.0, 'fix_seed': True, 'is_test': False}
Y
Yu Yang 已提交
85 86
        self.outputs = {
            'Out': self.inputs['X'],
Z
Zeng Jinle 已提交
87
            'Mask': np.ones((32, 64, 2)).astype('uint8')
Y
Yu Yang 已提交
88
        }
89 90


91
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
92
class TestDropoutOp4(OpTest):
93

94 95 96
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
97
        self.attrs = {'dropout_prob': 0.35, 'fix_seed': True, 'is_test': True}
98 99 100
        self.outputs = {
            'Out': self.inputs['X'] * (1.0 - self.attrs['dropout_prob'])
        }
101 102 103 104 105

    def test_check_output(self):
        self.check_output()


106
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
107
class TestDropoutOp5(OpTest):
108

109 110 111
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64, 3)).astype("float32")}
112
        self.attrs = {'dropout_prob': 0.75, 'is_test': True}
113 114 115
        self.outputs = {
            'Out': self.inputs['X'] * (1.0 - self.attrs['dropout_prob'])
        }
116 117

    def test_check_output(self):
P
phlrain 已提交
118 119 120 121
        self.check_output()


class TestDropoutOp6(TestDropoutOp):
122

P
phlrain 已提交
123 124 125 126 127 128 129
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
        self.attrs = {
            'dropout_prob': 1.0,
            'fix_seed': True,
            'is_test': False,
P
phlrain 已提交
130
            'dropout_implementation': 'upscale_in_train'
P
phlrain 已提交
131 132 133
        }
        self.outputs = {
            'Out': np.zeros((32, 64)).astype('float32'),
Z
Zeng Jinle 已提交
134
            'Mask': np.zeros((32, 64)).astype('uint8')
P
phlrain 已提交
135 136 137 138
        }


class TestDropoutOp7(TestDropoutOp):
139

P
phlrain 已提交
140 141 142 143 144 145 146
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64, 2)).astype("float32")}
        self.attrs = {
            'dropout_prob': 0.0,
            'fix_seed': True,
            'is_test': False,
P
phlrain 已提交
147
            'dropout_implementation': 'upscale_in_train'
P
phlrain 已提交
148 149 150
        }
        self.outputs = {
            'Out': self.inputs['X'],
Z
Zeng Jinle 已提交
151
            'Mask': np.ones((32, 64, 2)).astype('uint8')
P
phlrain 已提交
152 153 154
        }


155
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
P
phlrain 已提交
156
class TestDropoutOp8(OpTest):
157

P
phlrain 已提交
158 159 160 161 162 163 164
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
        self.attrs = {
            'dropout_prob': 0.35,
            'fix_seed': True,
            'is_test': True,
P
phlrain 已提交
165
            'dropout_implementation': 'upscale_in_train'
P
phlrain 已提交
166 167 168 169 170 171 172
        }
        self.outputs = {'Out': self.inputs['X']}

    def test_check_output(self):
        self.check_output()


173
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
P
phlrain 已提交
174
class TestDropoutOp9(OpTest):
175

P
phlrain 已提交
176 177 178 179 180 181
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64, 3)).astype("float32")}
        self.attrs = {
            'dropout_prob': 0.75,
            'is_test': True,
P
phlrain 已提交
182
            'dropout_implementation': 'upscale_in_train'
P
phlrain 已提交
183 184 185 186
        }
        self.outputs = {'Out': self.inputs['X']}

    def test_check_output(self):
187 188 189
        self.check_output()


M
mapingshuo 已提交
190
class TestDropoutOpWithSeed(OpTest):
191

M
mapingshuo 已提交
192 193 194 195
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {
            "X": np.random.random((32, 64)).astype("float32"),
196 197 198 199
            "Seed": np.asarray([125], dtype="int32")
        }
        self.attrs = {
            'dropout_prob': 0.0,
M
mapingshuo 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212
        }
        self.outputs = {
            'Out': self.inputs['X'],
            'Mask': np.ones((32, 64)).astype('uint8')
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out', max_relative_error=0.05)


213 214 215 216
@unittest.skipIf(not core.is_compiled_with_cuda()
                 or not core.op_support_gpu("dropout"),
                 "core is not compiled with CUDA or core is not support dropout"
                 )
217
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
K
Kexin Zhao 已提交
218
class TestFP16DropoutOp(OpTest):
219

K
Kexin Zhao 已提交
220 221
    def setUp(self):
        self.op_type = "dropout"
K
Kexin Zhao 已提交
222 223 224 225
        self.init_test_case()

        x = np.random.random(self.input_size).astype("float16")
        out = x * (1.0 - self.prob)
K
Kexin Zhao 已提交
226
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
K
Kexin Zhao 已提交
227 228 229 230 231
        self.attrs = {
            'dropout_prob': self.prob,
            'fix_seed': self.fix_seed,
            'is_test': True
        }
232
        self.outputs = {'Out': out}
K
Kexin Zhao 已提交
233

K
Kexin Zhao 已提交
234 235 236 237 238
    def init_test_case(self):
        self.input_size = [32, 64]
        self.prob = 0.35
        self.fix_seed = True

K
Kexin Zhao 已提交
239
    def test_check_output(self):
240
        self.check_output_with_place(core.CUDAPlace(0), atol=1e-3)
K
Kexin Zhao 已提交
241 242


243 244 245 246
@unittest.skipIf(not core.is_compiled_with_cuda()
                 or not core.op_support_gpu("dropout"),
                 "core is not compiled with CUDA or core is not support dropout"
                 )
247
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
K
Kexin Zhao 已提交
248
class TestFP16DropoutOp2(TestFP16DropoutOp):
249

K
Kexin Zhao 已提交
250 251 252 253
    def init_test_case(self):
        self.input_size = [32, 64, 3]
        self.prob = 0.75
        self.fix_seed = False
K
Kexin Zhao 已提交
254 255


256
class TestBF16DropoutOp(OpTest):
257

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    def setUp(self):
        self.op_type = "dropout"
        self.dtype = np.uint16

        x = np.random.random((32, 64)).astype("float32")
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {'dropout_prob': 1.0, 'fix_seed': True, 'is_test': False}
        self.outputs = {
            'Out':
            convert_float_to_uint16(np.zeros((32, 64)).astype('float32')),
            'Mask': np.zeros((32, 64)).astype('uint8')
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out')


278
class TestDropoutOpWithSeedOnCPUPlace(unittest.TestCase):
279

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    def test_seed_cpu_place(self):
        paddle.enable_static()
        main_program = Program()
        with program_guard(main_program):
            seed_input_name = "tensor@SeedInput"
            x_var_name = "tensor@X"
            x_out_var = "tensor@XOut"

            mask_var_name = "tensor@Mask"
            seed_input_var = main_program.global_block().create_var(
                name=seed_input_name,
                shape=[1],
                dtype='int32',
                persistable=False,
                stop_gradient=True)
            x_out_var = main_program.global_block().create_var(
                name=x_out_var,
                shape=[40, 40],
                dtype='float32',
                persistable=False,
                stop_gradient=True)
301 302 303 304 305
            x_var = main_program.global_block().create_var(name=x_var_name,
                                                           shape=[40, 40],
                                                           dtype='float32',
                                                           persistable=False,
                                                           stop_gradient=True)
306 307 308 309 310 311 312
            mask_var = main_program.global_block().create_var(
                name=mask_var_name,
                shape=[1],
                dtype='int',
                persistable=False,
                stop_gradient=True)

313 314 315 316 317 318 319 320
            main_program.global_block().append_op(type="fill_constant",
                                                  outputs={"Out": x_var_name},
                                                  attrs={
                                                      "shape": [40, 40],
                                                      "dtype": x_var.dtype,
                                                      "value": 1.0,
                                                      "place_type": 0
                                                  })
321 322 323 324
            main_program.global_block().append_op(
                type='seed',
                inputs={},
                outputs={'Out': seed_input_var},
325 326 327 328 329 330 331 332 333 334 335 336 337 338
                attrs={
                    'seed': 1,
                    'force_cpu': True
                })
            main_program.global_block().append_op(type='dropout',
                                                  inputs={
                                                      'X': x_var,
                                                      'Seed': seed_input_var
                                                  },
                                                  attrs={'dropout_prob': 0.},
                                                  outputs={
                                                      'Out': x_out_var,
                                                      'Mask': mask_var
                                                  })
339 340 341 342 343 344 345 346 347 348 349 350
            place = fluid.CPUPlace()
            if core.is_compiled_with_cuda():
                place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            x_out, mask_out = exe.run(
                main_program,
                feed={},
                fetch_list=[x_out_var.name, mask_var.name])
            x_in_np = np.ones([40, 40]).astype("float32")
            self.assertTrue(np.allclose(x_out, x_in_np))


351
class TestDropoutOpError(unittest.TestCase):
352

353 354 355 356 357
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of dropout must be Variable.
358 359
                x1 = fluid.create_lod_tensor(np.array([-1, 3, 5, 5]),
                                             [[1, 1, 1, 1]], fluid.CPUPlace())
360 361 362 363 364 365 366
                fluid.layers.dropout(x1, dropout_prob=0.5)

            self.assertRaises(TypeError, test_Variable)

            def test_dtype():
                # the input dtype of dropout must be float16 or float32 or float64
                # float16 only can be set on GPU place
367 368 369
                x2 = fluid.layers.data(name='x2',
                                       shape=[3, 4, 5, 6],
                                       dtype="int32")
370 371 372 373 374
                fluid.layers.dropout(x2, dropout_prob=0.5)

            self.assertRaises(TypeError, test_dtype)


375
class TestDropoutFAPI(unittest.TestCase):
376

377 378 379 380 381 382 383 384
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
385
            input = fluid.data(name="input", shape=[-1, -1], dtype="float32")
386
            res1 = paddle.nn.functional.dropout(x=input, p=0., training=False)
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
            res2 = paddle.nn.functional.dropout(x=input,
                                                p=0.,
                                                axis=0,
                                                training=True,
                                                mode='upscale_in_train')
            res3 = paddle.nn.functional.dropout(x=input,
                                                p=0.,
                                                axis=0,
                                                training=True,
                                                mode='downscale_in_infer')
            res4 = paddle.nn.functional.dropout(x=input,
                                                p=0.,
                                                axis=0,
                                                training=False,
                                                mode='upscale_in_train')
            res5 = paddle.nn.functional.dropout(x=input,
                                                p=0.,
                                                axis=0,
                                                training=False,
                                                mode='downscale_in_infer')
            res6 = paddle.nn.functional.dropout(x=input,
                                                p=0.,
                                                axis=[0, 1],
                                                training=True,
                                                mode='upscale_in_train')
            res7 = paddle.nn.functional.dropout(x=input,
                                                p=0.,
                                                axis=[0, 1],
                                                training=True,
                                                mode='downscale_in_infer')
            res8 = paddle.nn.functional.dropout(x=input,
                                                p=0.,
                                                axis=[0, 1],
                                                training=False,
                                                mode='upscale_in_train')
            res9 = paddle.nn.functional.dropout(x=input,
                                                p=0.,
                                                axis=[0, 1],
                                                training=False,
                                                mode='downscale_in_infer')
427
            res10 = paddle.nn.functional.dropout(x=input, p=1., training=True)
428
            res11 = paddle.fluid.layers.dropout(x=input, dropout_prob=0.)
429 430 431 432 433 434 435 436 437 438 439
            res12 = paddle.nn.functional.dropout(x=input,
                                                 p=0.,
                                                 axis=(0, 1),
                                                 training=False,
                                                 mode='upscale_in_train')

            res13 = paddle.nn.functional.dropout(x=input,
                                                 p=0.7,
                                                 axis=1,
                                                 training=True,
                                                 mode='upscale_in_train')
440 441

            in_np = np.ones([40, 40]).astype("float32")
442 443 444 445
            res_np = in_np
            res_np2 = np.zeros_like(in_np)

            exe = fluid.Executor(place)
446
            res_list = [
447 448
                res1, res2, res3, res4, res5, res6, res7, res8, res9, res11,
                res12
449
            ]
450 451 452 453 454 455 456 457 458
            for res in res_list:
                fetches = exe.run(fluid.default_main_program(),
                                  feed={"input": in_np},
                                  fetch_list=[res])
                self.assertTrue(np.allclose(fetches[0], res_np))
            fetches2 = exe.run(fluid.default_main_program(),
                               feed={"input": in_np},
                               fetch_list=[res10])
            self.assertTrue(np.allclose(fetches2[0], res_np2))
459 460 461
            fetches3 = exe.run(fluid.default_main_program(),
                               feed={"input": in_np},
                               fetch_list=[res13])
462 463 464 465 466 467 468 469 470 471 472 473 474

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                in_np = np.random.random([40, 40]).astype("float32")
                res_np = in_np
                res_np2 = np.zeros_like(in_np)
                input = fluid.dygraph.to_variable(in_np)

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
                res1 = paddle.nn.functional.dropout(x=input,
                                                    p=0.,
                                                    training=False)
                res2 = paddle.nn.functional.dropout(x=input,
                                                    p=0.,
                                                    axis=0,
                                                    training=True,
                                                    mode='upscale_in_train')
                res3 = paddle.nn.functional.dropout(x=input,
                                                    p=0.,
                                                    axis=0,
                                                    training=True,
                                                    mode='downscale_in_infer')
                res4 = paddle.nn.functional.dropout(x=input,
                                                    p=0.,
                                                    axis=0,
                                                    training=False,
                                                    mode='upscale_in_train')
                res5 = paddle.nn.functional.dropout(x=input,
                                                    p=0.,
                                                    axis=0,
                                                    training=False,
                                                    mode='downscale_in_infer')
                res6 = paddle.nn.functional.dropout(x=input,
                                                    p=0.,
                                                    axis=[0, 1],
                                                    training=True,
                                                    mode='upscale_in_train')
                res7 = paddle.nn.functional.dropout(x=input,
                                                    p=0.,
                                                    axis=[0, 1],
                                                    training=True,
                                                    mode='downscale_in_infer')
                res8 = paddle.nn.functional.dropout(x=input,
                                                    p=0.,
                                                    axis=[0, 1],
                                                    training=False,
                                                    mode='upscale_in_train')
                res9 = paddle.nn.functional.dropout(x=input,
                                                    p=0.,
                                                    axis=[0, 1],
                                                    training=False,
                                                    mode='downscale_in_infer')
                res10 = paddle.nn.functional.dropout(x=input,
                                                     p=1.,
                                                     training=True)
521 522
                dropout = paddle.fluid.dygraph.Dropout(p=0, )
                res11 = dropout(input)
523 524 525 526 527 528 529 530 531 532
                res12 = paddle.nn.functional.dropout(x=input,
                                                     p=0.,
                                                     axis=(0, 1),
                                                     training=False,
                                                     mode='upscale_in_train')
                res13 = paddle.nn.functional.dropout(x=input,
                                                     p=0.5,
                                                     axis=1,
                                                     training=True,
                                                     mode='upscale_in_train')
533

534
            res_list = [
535 536
                res1, res2, res3, res4, res5, res6, res7, res8, res9, res11,
                res12
537
            ]
538 539 540 541 542 543
            for res in res_list:
                self.assertTrue(np.allclose(res.numpy(), res_np))
            self.assertTrue(np.allclose(res10.numpy(), res_np2))


class TestDropoutFAPIError(unittest.TestCase):
544

545 546 547 548 549
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of dropout must be Variable.
550 551
                x1 = fluid.create_lod_tensor(np.array([-1, 3, 5, 5]),
                                             [[1, 1, 1, 1]], fluid.CPUPlace())
552 553 554 555 556 557
                paddle.nn.functional.dropout(x1, p=0.5)

            self.assertRaises(TypeError, test_Variable)

            def test_Variable2():
                # the input of dropout must be Variable.
558 559
                x1 = fluid.create_lod_tensor(np.array([-1, 3, 5, 5]),
                                             [[1, 1, 1, 1]], fluid.CPUPlace())
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
                paddle.nn.functional.dropout(x1, p=0.5, axis=0)

            self.assertRaises(TypeError, test_Variable2)

            def test_dtype():
                # the input dtype of dropout must be float32 or float64
                # float16 only can be set on GPU place
                xr = fluid.data(name='xr', shape=[3, 4, 5, 6], dtype="int32")
                paddle.nn.functional.dropout(xr, p=0.5)

            self.assertRaises(TypeError, test_dtype)

            def test_pdtype():
                # p should be int or float
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, p='0.5')

            self.assertRaises(TypeError, test_pdtype)

            def test_pvalue():
                # p should be 0.<=p<=1.
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, p=1.2)

            self.assertRaises(ValueError, test_pvalue)

            def test_mode():
                # mode should be 'downscale_in_infer' or 'upscale_in_train'
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, mode='abc')

            self.assertRaises(ValueError, test_mode)

            def test_axis():
                # axis should be int or list
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, axis=1.2)

            self.assertRaises(TypeError, test_axis)

            def test_axis_max():
                # maximum of axis should less than dimensions of x
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, axis=[0, 5])

            self.assertRaises(ValueError, test_axis_max)

607 608 609 610 611 612 613
            def test_axis_min():
                # minimum of axis should greater equal than 0
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, axis=[0, -1])

            self.assertRaises(ValueError, test_axis_min)

614 615 616 617 618 619 620 621 622
            def test_axis_len():
                # length of axis should not greater than dimensions of x
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, axis=[0, 1, 2, 3, 4])

            self.assertRaises(ValueError, test_axis_len)


class TestDropoutCAPI(unittest.TestCase):
623

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.random.random([40, 40]).astype("float32")
                result_np = input_np
                input = fluid.dygraph.to_variable(input_np)
                m = paddle.nn.Dropout(p=0.)
                m.eval()
                result = m(input)
                self.assertTrue(np.allclose(result.numpy(), result_np))


C
cnn 已提交
642
class TestDropout2DFAPI(unittest.TestCase):
643

644 645 646 647 648 649 650 651
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
652 653 654 655 656 657 658 659 660 661 662
            input = fluid.data(name="input",
                               shape=[2, 3, 4, 5],
                               dtype="float32")
            res1 = paddle.nn.functional.dropout2d(x=input,
                                                  p=0.,
                                                  training=False,
                                                  data_format='NCHW')
            res2 = paddle.nn.functional.dropout2d(x=input,
                                                  p=0.,
                                                  training=False,
                                                  data_format='NHWC')
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685

            in_np = np.random.random([2, 3, 4, 5]).astype("float32")
            res_np = in_np

            exe = fluid.Executor(place)
            res_list = [res1, res2]
            for res in res_list:
                fetches = exe.run(fluid.default_main_program(),
                                  feed={"input": in_np},
                                  fetch_list=[res])
                self.assertTrue(np.allclose(fetches[0], res_np))

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                in_np = np.random.random([2, 3, 4, 5]).astype("float32")
                res_np = in_np
                input = fluid.dygraph.to_variable(in_np)

686 687 688 689 690 691 692 693
                res1 = paddle.nn.functional.dropout2d(x=input,
                                                      p=0.,
                                                      training=False,
                                                      data_format='NCHW')
                res2 = paddle.nn.functional.dropout2d(x=input,
                                                      p=0.,
                                                      training=False,
                                                      data_format='NHWC')
694 695 696 697 698 699

            res_list = [res1, res2]
            for res in res_list:
                self.assertTrue(np.allclose(res.numpy(), res_np))


C
cnn 已提交
700
class TestDropout2DFAPIError(unittest.TestCase):
701

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_xdim():
                # dimentions of x should be 4
                x = fluid.data(name='x1', shape=[2, 3, 4, 5, 6], dtype="int32")
                paddle.nn.functional.dropout2d(x)

            self.assertRaises(ValueError, test_xdim)

            def test_dataformat():
                # data_format should be 'NCHW' or 'NHWC'
                x = fluid.data(name='x2', shape=[2, 3, 4, 5], dtype="int32")
                paddle.nn.functional.dropout2d(x, data_format='CNHW')

            self.assertRaises(ValueError, test_dataformat)


C
cnn 已提交
720
class TestDropout2DCAPI(unittest.TestCase):
721

722 723 724 725 726 727 728 729 730 731 732 733
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.random.random([2, 3, 4, 5]).astype("float32")
                result_np = input_np
                input = fluid.dygraph.to_variable(input_np)
C
cnn 已提交
734
                m = paddle.nn.Dropout2D(p=0.)
735 736 737 738 739
                m.eval()
                result = m(input)
                self.assertTrue(np.allclose(result.numpy(), result_np))


C
cnn 已提交
740
class TestDropout3DFAPI(unittest.TestCase):
741

742 743 744 745 746 747 748 749
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
750 751 752 753 754 755 756 757 758 759 760
            input = fluid.data(name="input",
                               shape=[2, 3, 4, 5, 6],
                               dtype="float32")
            res1 = paddle.nn.functional.dropout3d(x=input,
                                                  p=0.,
                                                  training=False,
                                                  data_format='NCDHW')
            res2 = paddle.nn.functional.dropout3d(x=input,
                                                  p=0.,
                                                  training=False,
                                                  data_format='NDHWC')
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

            in_np = np.random.random([2, 3, 4, 5, 6]).astype("float32")
            res_np = in_np

            exe = fluid.Executor(place)
            res_list = [res1, res2]
            for res in res_list:
                fetches = exe.run(fluid.default_main_program(),
                                  feed={"input": in_np},
                                  fetch_list=[res])
                self.assertTrue(np.allclose(fetches[0], res_np))

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                in_np = np.random.random([2, 3, 4, 5, 6]).astype("float32")
                res_np = in_np
                input = fluid.dygraph.to_variable(in_np)

784 785 786 787 788 789 790 791
                res1 = paddle.nn.functional.dropout3d(x=input,
                                                      p=0.,
                                                      training=False,
                                                      data_format='NCDHW')
                res2 = paddle.nn.functional.dropout3d(x=input,
                                                      p=0.,
                                                      training=False,
                                                      data_format='NDHWC')
792 793 794 795 796 797

            res_list = [res1, res2]
            for res in res_list:
                self.assertTrue(np.allclose(res.numpy(), res_np))


C
cnn 已提交
798
class TestDropout3DFAPIError(unittest.TestCase):
799

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_xdim():
                # dimentions of x should be 5
                x = fluid.data(name='x1', shape=[2, 3, 4, 5], dtype="int32")
                paddle.nn.functional.dropout3d(x)

            self.assertRaises(ValueError, test_xdim)

            def test_dataformat():
                # data_format should be 'NCDHW' or 'NDHWC'
                x = fluid.data(name='x2', shape=[2, 3, 4, 5, 6], dtype="int32")
                paddle.nn.functional.dropout3d(x, data_format='CNDHW')

            self.assertRaises(ValueError, test_dataformat)


C
cnn 已提交
818
class TestDropout3DCAPI(unittest.TestCase):
819

820 821 822 823 824 825 826 827 828 829 830 831
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.random.random([2, 3, 4, 5, 6]).astype("float32")
                result_np = input_np
                input = fluid.dygraph.to_variable(input_np)
C
cnn 已提交
832
                m = paddle.nn.Dropout3D(p=0.)
833 834 835 836 837
                m.eval()
                result = m(input)
                self.assertTrue(np.allclose(result.numpy(), result_np))


838
class TestAlphaDropoutFAPI(unittest.TestCase):
839

840 841 842 843 844 845 846 847 848 849
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[40, 40], dtype="float32")
            res1 = paddle.nn.functional.alpha_dropout(x=input, p=0.)
850 851 852
            res2 = paddle.nn.functional.alpha_dropout(x=input,
                                                      p=0.,
                                                      training=False)
853
            res3 = paddle.nn.functional.alpha_dropout(x=input, p=1.)
854 855 856

            in_np = np.random.random([40, 40]).astype("float32")
            res_np = in_np
857
            res_np3 = np.zeros_like(in_np)
858 859 860 861 862 863 864 865

            exe = fluid.Executor(place)
            res_list = [res1, res2]
            for res in res_list:
                fetches = exe.run(fluid.default_main_program(),
                                  feed={"input": in_np},
                                  fetch_list=[res])
                self.assertTrue(np.allclose(fetches[0], res_np))
866 867 868 869
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": in_np},
                              fetch_list=[res3])
            self.assertTrue(np.allclose(fetches[0], res_np3))
870 871 872 873 874 875 876 877 878 879

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                in_np = np.random.random([40, 40]).astype("float32")
                res_np = in_np
880
                res_np3 = np.zeros_like(in_np)
881 882 883
                input = fluid.dygraph.to_variable(in_np)

                res1 = paddle.nn.functional.alpha_dropout(x=input, p=0.)
884 885 886
                res2 = paddle.nn.functional.alpha_dropout(x=input,
                                                          p=0.,
                                                          training=False)
887
                res3 = paddle.nn.functional.alpha_dropout(x=input, p=1.)
888 889 890 891

            res_list = [res1, res2]
            for res in res_list:
                self.assertTrue(np.allclose(res.numpy(), res_np))
892
            self.assertTrue(np.allclose(res3.numpy(), res_np3))
893 894 895


class TestAlphaDropoutFAPIError(unittest.TestCase):
896

897 898 899 900 901
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of dropout must be Variable.
902 903
                x1 = fluid.create_lod_tensor(np.array([-1, 3, 5, 5]),
                                             [[1, 1, 1, 1]], fluid.CPUPlace())
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
                paddle.nn.functional.alpha_dropout(x1, p=0.5)

            self.assertRaises(TypeError, test_Variable)

            def test_dtype():
                # the input dtype of dropout must be float32 or float64
                xr = fluid.data(name='xr', shape=[3, 4, 5, 6], dtype="int32")
                paddle.nn.functional.alpha_dropout(xr)

            self.assertRaises(TypeError, test_dtype)

            def test_pdtype():
                # p should be int or float
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.alpha_dropout(x2, p='0.5')

            self.assertRaises(TypeError, test_pdtype)

            def test_pvalue():
                # p should be 0.<=p<=1.
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.alpha_dropout(x2, p=1.2)

            self.assertRaises(ValueError, test_pvalue)


class TestAlphaDropoutCAPI(unittest.TestCase):
931

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.random.random([40, 40]).astype("float32")
                result_np = input_np
                input = fluid.dygraph.to_variable(input_np)
                m = paddle.nn.AlphaDropout(p=0.)
                m.eval()
                result = m(input)
                self.assertTrue(np.allclose(result.numpy(), result_np))


950
class TestDropoutWithDeterminateSeedGenerator(unittest.TestCase):
951

952 953 954 955 956 957 958 959 960 961 962 963 964
    def setUp(self):
        paddle.framework.random.set_random_seed_generator('seed0', 123)
        paddle.framework.random.set_random_seed_generator('seed1', 123)
        rng0 = paddle.framework.random.get_random_seed_generator('seed0')
        rng1 = paddle.framework.random.get_random_seed_generator('seed1')
        self.places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            self.places.append(paddle.CUDAPlace(0))

    def check_static_result(self, place):
        from paddle.distributed.fleet.meta_parallel.parallel_layers.random import dropout
        with static.program_guard(static.Program(), static.Program()):
            input = static.data(name="input", shape=[40, 40], dtype="float32")
965 966 967 968 969 970 971 972 973 974
            res1 = dropout(input,
                           p=0.3,
                           training=True,
                           mode='upscale_in_train',
                           rng_name='seed0')
            res2 = dropout(input,
                           p=0.3,
                           training=True,
                           mode='upscale_in_train',
                           rng_name='seed1')
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
            res3 = dropout(input, p=0.3)

            in_np = np.random.random([40, 40]).astype("float32")

            exe = static.Executor(place)
            res_list = [res1, res2]
            for i in range(2):
                out1, out2 = exe.run(static.default_main_program(),
                                     feed={"input": in_np},
                                     fetch_list=res_list)
                self.assertTrue(np.allclose(out1, out2))

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)


H
hong 已提交
992
class TestDropoutBackward(unittest.TestCase):
993

H
hong 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def cal_grad_upscale_train(self, mask, prob):
        return mask.astype("float32") / (1 - prob)

    def cal_grad_downscale_in_infer(self, mask):
        return mask.astype("float32")

    def test_backward_downscale_in_infer(self):
1007
        _enable_legacy_dygraph()
H
hong 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016
        for place in self.places:
            with fluid.dygraph.guard(place):

                input = paddle.uniform([40, 40], dtype="float32")
                input.stop_gradient = False
                out, mask = core.ops.dropout(input, 'dropout_prob', 0.5)
                out.backward()

                self.assertTrue(
1017 1018 1019
                    np.array_equal(
                        input.gradient(),
                        self.cal_grad_downscale_in_infer(mask.numpy())))
H
hong 已提交
1020

H
hong 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
    def test_backward_downscale_in_infer_eager(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                with _test_eager_guard():
                    input = paddle.uniform([40, 40], dtype="float32")
                    input.stop_gradient = False
                    out, mask = _C_ops.final_state_dropout(
                        input, None, 0.5, False, "downgrade_in_infer", 0, False)
                    out.backward()
                    self.assertTrue(
1031 1032 1033
                        np.array_equal(
                            input.gradient(),
                            self.cal_grad_downscale_in_infer(mask.numpy())))
H
hong 已提交
1034

H
hong 已提交
1035
    def test_backward_upscale_train(self):
1036
        _enable_legacy_dygraph()
H
hong 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
        for place in self.places:
            with fluid.dygraph.guard(place):

                prob = 0.5
                input = paddle.uniform([40, 40], dtype="float32")
                input.stop_gradient = False
                out, mask = core.ops.dropout(input, 'dropout_prob', prob,
                                             "dropout_implementation",
                                             "upscale_in_train")
                out.backward()

                self.assertTrue(
1049 1050 1051
                    np.allclose(input.gradient(),
                                self.cal_grad_upscale_train(mask.numpy(),
                                                            prob)))
H
hong 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

    def test_backward_upscale_train_eager(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                with _test_eager_guard():
                    prob = 0.5
                    input = paddle.uniform([40, 40], dtype="float32")
                    input.stop_gradient = False
                    out, mask = _C_ops.final_state_dropout(
                        input, None, 0.5, False, "upscale_in_train", 0, False)
                    out.backward()

                    self.assertTrue(
1065 1066 1067
                        np.allclose(
                            input.gradient(),
                            self.cal_grad_upscale_train(mask.numpy(), prob)))
H
hong 已提交
1068 1069

    def test_backward_upscale_train_2(self):
1070
        _enable_legacy_dygraph()
H
hong 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
        for place in self.places:
            with fluid.dygraph.guard(place):

                prob = 0.3
                input = paddle.uniform([40, 40], dtype="float32")
                input.stop_gradient = False
                out, mask = core.ops.dropout(input, 'dropout_prob', prob,
                                             "dropout_implementation",
                                             "upscale_in_train")
                out.backward()

                self.assertTrue(
1083 1084 1085
                    np.allclose(input.gradient(),
                                self.cal_grad_upscale_train(mask.numpy(),
                                                            prob)))
H
hong 已提交
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
    def test_backward_upscale_train_2_eager(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                with _test_eager_guard():

                    prob = 0.3
                    input = paddle.uniform([40, 40], dtype="float32")
                    input.stop_gradient = False
                    out, mask = _C_ops.final_state_dropout(
                        input, None, 0.3, False, "upscale_in_train", 0, False)

                    out.backward()

                    self.assertTrue(
1101 1102 1103
                        np.allclose(
                            input.gradient(),
                            self.cal_grad_upscale_train(mask.numpy(), prob)))
1104

H
hong 已提交
1105

1106
class TestRandomValue(unittest.TestCase):
1107

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
    def test_fixed_random_number(self):
        # Test GPU Fixed random number, which is generated by 'curandStatePhilox4_32_10_t'
        if not paddle.is_compiled_with_cuda():
            return

        # Different GPU generate different random value. Only test V100 here.
        if not "V100" in paddle.device.cuda.get_device_name():
            return

        print("Test Fixed Random number on V100 GPU------>")
        paddle.disable_static()
        paddle.set_device('gpu')
        paddle.seed(100)

        x = paddle.rand([32, 1024, 1024], dtype='float32')
        out = paddle.nn.functional.dropout(x, 0.25).numpy()
        index0, index1, index2 = np.nonzero(out)
        self.assertEqual(np.sum(index0), 390094540)
        self.assertEqual(np.sum(index1), 12871475125)
        self.assertEqual(np.sum(index2), 12872777397)
        self.assertEqual(np.sum(out), 16778744.0)
        expect = [
            0.6914956, 0.5294584, 0.19032137, 0.6996228, 0.3338527, 0.8442094,
            0.96965003, 1.1726775, 0., 0.28037727
        ]
        self.assertTrue(np.allclose(out[10, 100, 500:510], expect))

        x = paddle.rand([32, 1024, 1024], dtype='float64')
        out = paddle.nn.functional.dropout(x).numpy()
        index0, index1, index2 = np.nonzero(out)
        self.assertEqual(np.sum(index0), 260065137)
        self.assertEqual(np.sum(index1), 8582636095)
        self.assertEqual(np.sum(index2), 8582219962)
        self.assertEqual(np.sum(out), 16778396.563660286)
        expect = [
            1.28587354, 0.15563703, 0., 0.28799703, 0., 0., 0., 0.54964,
            0.51355682, 0.33818988
        ]
        self.assertTrue(np.allclose(out[20, 100, 500:510], expect))

        x = paddle.ones([32, 1024, 1024], dtype='float16')
        out = paddle.nn.functional.dropout(x, 0.75).numpy()
        index0, index1, index2 = np.nonzero(out)
        self.assertEqual(np.sum(index0), 130086900)
        self.assertEqual(np.sum(index1), 4291190105)
        self.assertEqual(np.sum(index2), 4292243807)
        expect = [0., 0., 0., 0., 0., 0., 0., 0., 4., 4.]
        self.assertTrue(np.allclose(out[0, 100, 500:510], expect))

        paddle.enable_static()


1160
if __name__ == '__main__':
H
hong 已提交
1161
    paddle.enable_static()
1162
    unittest.main()