Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
b1a18552
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b1a18552
编写于
7年前
作者:
X
Xinghai Sun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fixed SEGFAULT of dropout operator in GPU.
上级
9a44f3d6
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
134 addition
and
21 deletion
+134
-21
paddle/operators/dropout_op.cc
paddle/operators/dropout_op.cc
+4
-2
paddle/operators/dropout_op.cu
paddle/operators/dropout_op.cu
+2
-2
paddle/operators/dropout_op.h
paddle/operators/dropout_op.h
+81
-13
python/paddle/v2/framework/tests/CMakeLists.txt
python/paddle/v2/framework/tests/CMakeLists.txt
+1
-0
python/paddle/v2/framework/tests/op_test_util.py
python/paddle/v2/framework/tests/op_test_util.py
+4
-4
python/paddle/v2/framework/tests/test_dropout_op.py
python/paddle/v2/framework/tests/test_dropout_op.py
+42
-0
未找到文件。
paddle/operators/dropout_op.cc
浏览文件 @
b1a18552
...
...
@@ -37,6 +37,8 @@ class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
DropoutOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddAttr
<
float
>
(
"dropout_prob"
,
"Dropout probability."
).
SetDefault
(
.5
f
);
AddAttr
<
int
>
(
"seed"
,
"Dropout random seed."
).
SetDefault
(
0
);
AddInput
(
"X"
,
"The input of dropout op."
);
AddOutput
(
"Out"
,
"The output of dropout op."
);
AddOutput
(
"Mask"
,
"The dropout mask."
).
AsIntermediate
();
...
...
@@ -75,7 +77,7 @@ class DropoutOpGrad : public framework::OperatorWithKernel {
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
dropout
,
ops
::
DropoutOp
,
ops
::
DropoutOpMaker
,
dropout_grad
,
ops
::
DropoutOpGrad
);
REGISTER_OP_CPU_KERNEL
(
dropout
,
ops
::
DropoutKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
dropout
,
ops
::
CPU
DropoutKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
dropout_grad
,
ops
::
DropoutGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
This diff is collapsed.
Click to expand it.
paddle/operators/dropout_op.cu
浏览文件 @
b1a18552
...
...
@@ -16,7 +16,7 @@
#include "paddle/operators/dropout_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
dropout
,
ops
::
DropoutKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
dropout
,
ops
::
GPU
DropoutKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
dropout_grad
,
ops
::
DropoutGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
This diff is collapsed.
Click to expand it.
paddle/operators/dropout_op.h
浏览文件 @
b1a18552
...
...
@@ -13,6 +13,11 @@
limitations under the License. */
#pragma once
#include <thrust/device_ptr.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/random.h>
#include <thrust/transform.h>
#include <random>
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
...
...
@@ -25,25 +30,85 @@ template <typename T, int MajorType = Eigen::RowMajor,
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
Place
,
typename
T
>
class
DropoutKernel
:
public
framework
::
OpKernel
{
class
CPUDropoutKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
*
mask
=
context
.
Output
<
Tensor
>
(
"Mask"
);
T
*
mask_data
=
mask
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
y_data
=
y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
*
x_data
=
x
->
data
<
T
>
();
float
dropout_prob
=
context
.
op_
.
GetAttr
<
float
>
(
"dropout_prob"
);
int
seed
=
context
.
op_
.
GetAttr
<
int
>
(
"seed"
);
std
::
minstd_rand
engine
;
engine
.
seed
(
seed
);
std
::
uniform_real_distribution
<
T
>
dist
(
0
,
1
);
size_t
size
=
framework
::
product
(
mask
->
dims
());
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
if
(
dist
(
engine
)
<
dropout_prob
)
{
mask_data
[
i
]
=
0
;
y_data
[
i
]
=
0
;
}
else
{
mask_data
[
i
]
=
1
;
y_data
[
i
]
=
(
1
-
dropout_prob
)
*
x_data
[
i
];
}
}
}
};
template
<
typename
T
>
struct
MaskGenerator
{
float
dropout_prob_
;
int
seed_
;
__host__
__device__
MaskGenerator
(
float
dropout_prob
,
int
seed
)
:
dropout_prob_
(
dropout_prob
),
seed_
(
seed
)
{}
__host__
__device__
T
operator
()(
const
unsigned
int
n
)
const
{
thrust
::
minstd_rand
rng
;
rng
.
seed
(
seed_
);
thrust
::
uniform_real_distribution
<
T
>
dist
(
0
,
1
);
rng
.
discard
(
n
);
if
(
dist
(
rng
)
<
dropout_prob_
)
{
return
static_cast
<
T
>
(
0
);
}
else
{
return
static_cast
<
T
>
(
1
);
}
}
};
// It seems that Eigen::Tensor::setRandom in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template
<
typename
Place
,
typename
T
>
class
GPUDropoutKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
*
mask
=
context
.
Output
<
Tensor
>
(
"Mask"
);
mask
->
mutable_data
<
T
>
(
context
.
GetPlace
());
y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
float
dropout_prob
=
context
.
op_
.
GetAttr
<
float
>
(
"dropout_prob"
);
int
seed
=
context
.
op_
.
GetAttr
<
int
>
(
"seed"
);
thrust
::
counting_iterator
<
unsigned
int
>
index_sequence_begin
(
0
);
int
size
=
framework
::
product
(
mask
->
dims
());
T
*
mask_data
=
mask
->
mutable_data
<
T
>
(
context
.
GetPlace
());
thrust
::
transform
(
index_sequence_begin
,
index_sequence_begin
+
size
,
thrust
::
device_ptr
<
T
>
(
mask_data
),
MaskGenerator
<
T
>
(
dropout_prob
,
seed
));
auto
dims
=
x
->
dims
();
auto
X
=
EigenMatrix
<
T
>::
From
(
*
x
);
auto
Y
=
EigenMatrix
<
T
>::
From
(
*
y
);
auto
M
=
EigenMatrix
<
T
>::
From
(
*
mask
);
auto
new_dims
=
framework
::
make_ddim
({
dims
[
0
],
size
/
dims
[
0
]});
auto
X
=
EigenMatrix
<
T
>::
From
(
*
x
,
new_dims
);
auto
Y
=
EigenMatrix
<
T
>::
From
(
*
y
,
new_dims
);
auto
M
=
EigenMatrix
<
T
>::
From
(
*
mask
,
new_dims
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
M
.
device
(
place
).
setRandom
<
UniformRandomGenerator
>
();
float
dropout_prob
=
context
.
op_
.
GetAttr
<
float
>
(
"dropout_prob"
);
M
.
device
(
place
)
=
(
M
>
dropout_prob
).
cast
<
float
>
();
Y
.
device
(
place
)
=
X
*
Y
;
Y
.
device
(
place
)
=
X
*
M
*
(
1
-
dropout_prob
);
}
};
...
...
@@ -57,12 +122,15 @@ class DropoutGradKernel : public framework::OpKernel {
grad_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dims
=
grad_x
->
dims
();
auto
M
=
EigenMatrix
<
T
>::
From
(
*
mask
);
auto
dX
=
EigenMatrix
<
T
>::
From
(
*
grad_x
);
auto
dY
=
EigenMatrix
<
T
>::
From
(
*
grad_y
);
int
size
=
static_cast
<
int
>
(
framework
::
product
(
dims
));
auto
new_dims
=
framework
::
make_ddim
({
dims
[
0
],
size
/
dims
[
0
]});
auto
M
=
EigenMatrix
<
T
>::
From
(
*
mask
,
new_dims
);
auto
dX
=
EigenMatrix
<
T
>::
From
(
*
grad_x
,
new_dims
);
auto
dY
=
EigenMatrix
<
T
>::
From
(
*
grad_y
,
new_dims
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
dX
.
device
(
place
)
=
dY
*
M
;
float
dropout_prob
=
context
.
op_
.
GetAttr
<
float
>
(
"dropout_prob"
);
dX
.
device
(
place
)
=
dY
*
M
*
(
1
-
dropout_prob
);
}
};
...
...
This diff is collapsed.
Click to expand it.
python/paddle/v2/framework/tests/CMakeLists.txt
浏览文件 @
b1a18552
...
...
@@ -4,6 +4,7 @@ py_test(test_scope SRCS test_scope.py)
py_test
(
test_tensor SRCS test_tensor.py
)
py_test
(
test_mul_op SRCS test_mul_op.py
)
py_test
(
test_dropout_op SRCS test_dropout_op.py
)
py_test
(
test_mean_op SRCS test_mean_op.py
)
...
...
This diff is collapsed.
Click to expand it.
python/paddle/v2/framework/tests/op_test_util.py
浏览文件 @
b1a18552
...
...
@@ -6,13 +6,13 @@ from paddle.v2.framework.op import Operator
class
OpTestMeta
(
type
):
"""
Operator Test ClassMeta.
It injects `test_all` method into user's OperatorTest class, to make Python
It injects `test_all` method into user's OperatorTest class, to make Python
unittest module run that method.
The `test_all` read what value is stored in `self`. It use self's values to
create and run a operator, and check whether that op is OK or not.
See `test_add_two_op` for example usage.
"""
...
...
This diff is collapsed.
Click to expand it.
python/paddle/v2/framework/tests/test_dropout_op.py
0 → 100644
浏览文件 @
b1a18552
import
unittest
import
numpy
as
np
from
gradient_checker
import
GradientChecker
,
create_op
from
op_test_util
import
OpTestMeta
class
TestDropoutOpProbZero
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
self
.
type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dropout_prob'
:
0.0
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
],
'Mask'
:
np
.
ones
((
32
,
64
))}
class
TestDropoutOpAllProbOne
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
self
.
type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dropout_prob'
:
1.0
}
self
.
outputs
=
{
'Out'
:
np
.
zeros
((
32
,
64
)),
'Mask'
:
np
.
zeros
((
32
,
64
))}
class
DropoutGradOpTest
(
GradientChecker
):
def
test_dropout_2d
(
self
):
op
=
create_op
(
"dropout"
)
inputs
=
{
'X'
:
np
.
random
.
random
((
10
,
5
)).
astype
(
"float32"
)}
self
.
compare_grad
(
op
,
inputs
)
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
]),
"Out"
)
def
test_dropout_3d
(
self
):
op
=
create_op
(
"dropout"
)
inputs
=
{
'X'
:
np
.
random
.
random
((
10
,
5
,
4
)).
astype
(
"float32"
)}
self
.
compare_grad
(
op
,
inputs
)
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
]),
"Out"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
This diff is collapsed.
Click to expand it.
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录
新手
引导
客服
返回
顶部