test_case.py 11.2 KB
Newer Older
L
liym27 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import unittest

import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.layers as layers
from paddle.fluid.framework import Program, program_guard
from functools import partial
25
import paddle.fluid.optimizer as optimizer
L
liym27 已提交
26 27 28


class TestAPICase(unittest.TestCase):
29

L
liym27 已提交
30
    def test_return_single_var(self):
31

L
liym27 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
        def fn_1():
            return layers.fill_constant(shape=[4, 2], dtype='int32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[4, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[4, 3], dtype='int32', value=3)

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3

            # call fn_1
51 52
            out_0 = layers.case(pred_fn_pairs=[(pred_1, fn_1), (pred_1, fn_2)],
                                default=fn_3)
L
liym27 已提交
53 54

            # call fn_2
55 56
            out_1 = layers.case(pred_fn_pairs=[(pred_2, fn_1), (pred_1, fn_2)],
                                default=fn_3)
L
liym27 已提交
57 58

            # call default fn_3
59 60
            out_2 = layers.case(pred_fn_pairs=((pred_2, fn_1), (pred_2, fn_2)),
                                default=fn_3)
L
liym27 已提交
61 62 63 64 65 66 67

            # no default, call fn_2
            out_3 = layers.case(pred_fn_pairs=[(pred_1, fn_2)])

            # no default, call fn_2. but pred_2 is false
            out_4 = layers.case(pred_fn_pairs=[(pred_2, fn_2)])

68 69
            place = fluid.CUDAPlace(
                0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
L
liym27 已提交
70 71 72 73 74 75 76 77 78 79 80 81
            exe = fluid.Executor(place)

            res = exe.run(main_program,
                          fetch_list=[out_0, out_1, out_2, out_3, out_4])

            self.assertTrue(np.allclose(res[0], 1))
            self.assertTrue(np.allclose(res[1], 2))
            self.assertTrue(np.allclose(res[2], 3))
            self.assertTrue(np.allclose(res[3], 2))
            self.assertTrue(np.allclose(res[4], 2))

    def test_return_var_tuple(self):
82

L
liym27 已提交
83
        def fn_1():
84 85 86 87 88
            return layers.fill_constant(shape=[1, 2], dtype='int32',
                                        value=1), layers.fill_constant(
                                            shape=[2, 3],
                                            dtype='float32',
                                            value=2)
L
liym27 已提交
89 90

        def fn_2():
91 92 93 94 95
            return layers.fill_constant(shape=[3, 4], dtype='int32',
                                        value=3), layers.fill_constant(
                                            shape=[4, 5],
                                            dtype='float32',
                                            value=4)
L
liym27 已提交
96 97

        def fn_3():
98 99 100 101 102
            return layers.fill_constant(shape=[5], dtype='int32',
                                        value=5), layers.fill_constant(
                                            shape=[5, 6],
                                            dtype='float32',
                                            value=6)
L
liym27 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = layers.fill_constant(shape=[1], dtype='float32', value=1)
            y = layers.fill_constant(shape=[1], dtype='float32', value=1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=3)

            pred_1 = layers.equal(x, y)  # true
            pred_2 = layers.equal(x, z)  # false

            out = layers.case(((pred_1, fn_1), (pred_2, fn_2)), fn_3)

116 117
            place = fluid.CUDAPlace(
                0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
L
liym27 已提交
118 119 120 121 122 123
            exe = fluid.Executor(place)
            ret = exe.run(main_program, fetch_list=out)

            self.assertTrue(
                np.allclose(np.asarray(ret[0]), np.full((1, 2), 1, np.int32)))
            self.assertTrue(
124
                np.allclose(np.asarray(ret[1]), np.full((2, 3), 2, np.float32)))
L
liym27 已提交
125 126 127


class TestAPICase_Nested(unittest.TestCase):
128

L
liym27 已提交
129
    def test_nested_case(self):
130

L
liym27 已提交
131 132 133
        def fn_1(x=1):
            var_5 = layers.fill_constant(shape=[1], dtype='int32', value=5)
            var_6 = layers.fill_constant(shape=[1], dtype='int32', value=6)
134 135 136 137 138 139 140 141
            out = layers.case(pred_fn_pairs=[
                (var_5 < var_6,
                 partial(
                     layers.fill_constant, shape=[1], dtype='int32', value=x)),
                (var_5 == var_6,
                 partial(
                     layers.fill_constant, shape=[2], dtype='int32', value=x))
            ])
L
liym27 已提交
142 143 144 145 146
            return out

        def fn_2(x=2):
            var_5 = layers.fill_constant(shape=[1], dtype='int32', value=5)
            var_6 = layers.fill_constant(shape=[1], dtype='int32', value=6)
147 148 149 150 151 152
            out = layers.case(pred_fn_pairs=[
                (var_5 < var_6, partial(fn_1, x=x)),
                (var_5 == var_6,
                 partial(
                     layers.fill_constant, shape=[2], dtype='int32', value=x))
            ])
L
liym27 已提交
153 154 155 156 157
            return out

        def fn_3():
            var_5 = layers.fill_constant(shape=[1], dtype='int32', value=5)
            var_6 = layers.fill_constant(shape=[1], dtype='int32', value=6)
158 159 160 161 162 163
            out = layers.case(pred_fn_pairs=[
                (var_5 < var_6, partial(fn_2, x=3)),
                (var_5 == var_6,
                 partial(
                     layers.fill_constant, shape=[2], dtype='int32', value=7))
            ])
L
liym27 已提交
164 165 166 167 168 169 170 171 172 173 174
            return out

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3

175 176
            out_1 = layers.case(pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)],
                                default=fn_3)
L
liym27 已提交
177

178 179
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_1), (pred_1, fn_2)],
                                default=fn_3)
L
liym27 已提交
180

181 182
            out_3 = layers.case(pred_fn_pairs=[(x == y, fn_1), (x == z, fn_2)],
                                default=fn_3)
L
liym27 已提交
183

184 185
            place = fluid.CUDAPlace(
                0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
L
liym27 已提交
186 187 188 189 190 191 192 193 194 195
            exe = fluid.Executor(place)

            res = exe.run(main_program, fetch_list=[out_1, out_2, out_3])

            self.assertTrue(np.allclose(res[0], 1))
            self.assertTrue(np.allclose(res[1], 2))
            self.assertTrue(np.allclose(res[2], 3))


class TestAPICase_Error(unittest.TestCase):
196

L
liym27 已提交
197
    def test_error(self):
198

L
liym27 已提交
199 200 201 202 203 204 205 206 207 208
        def fn_1():
            return layers.fill_constant(shape=[4, 2], dtype='int32', value=1)

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.23)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)
            pred_1 = layers.less_than(z, x)  # true

209
            # The type of 'pred_fn_pairs' in case must be list or tuple
L
liym27 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
            def type_error_pred_fn_pairs():
                layers.case(pred_fn_pairs=1, default=fn_1)

            self.assertRaises(TypeError, type_error_pred_fn_pairs)

            # The elements' type of 'pred_fn_pairs' in Op(case) must be tuple
            def type_error_pred_fn_1():
                layers.case(pred_fn_pairs=[1], default=fn_1)

            self.assertRaises(TypeError, type_error_pred_fn_1)

            # The tuple's size of 'pred_fn_pairs' in Op(case) must be 2
            def type_error_pred_fn_2():
                layers.case(pred_fn_pairs=[(1, 2, 3)], default=fn_1)

            self.assertRaises(TypeError, type_error_pred_fn_2)

            # The pred's type of 'pred_fn_pairs' in Op(case) must be bool Variable
            def type_error_pred():
                layers.case(pred_fn_pairs=[(1, fn_1)], default=fn_1)

            self.assertRaises(TypeError, type_error_pred)

            # The function of pred_fn_pairs in case must be callable
            def type_error_fn():
                layers.case(pred_fn_pairs=[(pred_1, 2)], default=fn_1)

            self.assertRaises(TypeError, type_error_fn)

            # The default in Op(case) must be callable
            def type_error_default():
                layers.case(pred_fn_pairs=[(pred_1, fn_1)], default=fn_1())

            self.assertRaises(TypeError, type_error_default)


246 247
# when optimizer in case
class TestMutiTask(unittest.TestCase):
248

249 250 251 252 253
    def test_optimizer_in_case(self):
        BATCH_SIZE = 1
        INPUT_SIZE = 784
        EPOCH_NUM = 2

254 255 256 257 258 259
        x = fluid.data(name='x',
                       shape=[BATCH_SIZE, INPUT_SIZE],
                       dtype='float32')
        y = fluid.data(name='y',
                       shape=[BATCH_SIZE, INPUT_SIZE],
                       dtype='float32')
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

        switch_id = fluid.data(name='switch_id', shape=[1], dtype='int32')

        one = layers.fill_constant(shape=[1], dtype='int32', value=1)
        adam = optimizer.Adam(learning_rate=0.001)
        adagrad = optimizer.Adagrad(learning_rate=0.001)

        def fn_1():
            sum = layers.elementwise_mul(x, y)
            loss = layers.mean(sum, name="f_1_loss")
            adam.minimize(loss)

        def fn_2():
            sum = layers.elementwise_mul(x, y)
            loss = layers.mean(sum, name="f_2_loss")
            adagrad.minimize(loss)

        layers.case(pred_fn_pairs=[(switch_id == one, fn_1)], default=fn_2)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        for epoch in range(EPOCH_NUM):
            np.random.seed(epoch)
            feed_image = np.random.random(
                size=[BATCH_SIZE, INPUT_SIZE]).astype('float32')
            main_program = fluid.default_main_program()
            out = exe.run(main_program,
                          feed={
                              'x': feed_image,
                              'y': feed_image,
                              'switch_id': np.array([epoch]).astype('int32')
                          },
                          fetch_list=[])


L
liym27 已提交
296 297
if __name__ == '__main__':
    unittest.main()