flowers.py 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module will download dataset from
16
http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html
17 18
and parse train/test set intopaddle reader creators.

19
This set contains images of flowers belonging to 102 different categories.
20 21 22 23 24 25
The images were acquired by searching the web and taking pictures. There are a
minimum of 40 images for each category.

The database was used in:

Nilsback, M-E. and Zisserman, A. Automated flower classification over a large
26 27
 number of classes.Proceedings of the Indian Conference on Computer Vision,
Graphics and Image Processing (2008)
28 29 30
http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.{pdf,ps.gz}.

"""
31 32 33

from __future__ import print_function

34
import itertools
35
import functools
36
from .common import download
37 38
import tarfile
import scipy.io as scio
39
from paddle.dataset.image import *
40
from paddle.reader import map_readers, xmap_readers
M
minqiyang 已提交
41
from paddle import compat as cpt
42
import paddle.utils.deprecated as deprecated
43 44
import os
import numpy as np
45
from multiprocessing import cpu_count
M
minqiyang 已提交
46
import six
47
from six.moves import cPickle as pickle
48 49
__all__ = ['train', 'test', 'valid']

50 51 52
DATA_URL = 'http://paddlemodels.bj.bcebos.com/flowers/102flowers.tgz'
LABEL_URL = 'http://paddlemodels.bj.bcebos.com/flowers/imagelabels.mat'
SETID_URL = 'http://paddlemodels.bj.bcebos.com/flowers/setid.mat'
M
minqiyang 已提交
53
DATA_MD5 = '52808999861908f626f3c1f4e79d11fa'
54 55
LABEL_MD5 = 'e0620be6f572b9609742df49c70aed4d'
SETID_MD5 = 'a5357ecc9cb78c4bef273ce3793fc85c'
W
wanghaoshuang 已提交
56 57 58 59 60 61
# In official 'readme', tstid is the flag of test data
# and trnid is the flag of train data. But test data is more than train data.
# So we exchange the train data and test data.
TRAIN_FLAG = 'tstid'
TEST_FLAG = 'trnid'
VALID_FLAG = 'valid'
62 63


64
def default_mapper(is_train, sample):
65 66 67 68
    '''
    map image bytes data to type needed by model input layer
    '''
    img, label = sample
69
    img = load_image_bytes(img)
D
dangqingqing 已提交
70
    img = simple_transform(
D
dangqingqing 已提交
71
        img, 256, 224, is_train, mean=[103.94, 116.78, 123.68])
72 73 74
    return img.flatten().astype('float32'), label


75 76 77 78
train_mapper = functools.partial(default_mapper, True)
test_mapper = functools.partial(default_mapper, False)


79 80 81
def reader_creator(data_file,
                   label_file,
                   setid_file,
82
                   dataset_name,
83
                   mapper,
84
                   buffered_size=1024,
85 86
                   use_xmap=True,
                   cycle=False):
87
    '''
88
    1. read images from tar file and
89 90
        merge images into batch files in 102flowers.tgz_batch/
    2. get a reader to read sample from batch file
91 92

    :param data_file: downloaded data file
93
    :type data_file: string
94
    :param label_file: downloaded label file
95 96 97 98
    :type label_file: string
    :param setid_file: downloaded setid file containing information
                        about how to split dataset
    :type setid_file: string
99 100
    :param dataset_name: data set name (tstid|trnid|valid)
    :type dataset_name: string
101
    :param mapper: a function to map image bytes data to type
102 103
                    needed by model input layer
    :type mapper: callable
104 105
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
106 107
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
108 109 110
    :return: data reader
    :rtype: callable
    '''
111 112 113 114 115 116 117
    labels = scio.loadmat(label_file)['labels'][0]
    indexes = scio.loadmat(setid_file)[dataset_name][0]
    img2label = {}
    for i in indexes:
        img = "jpg/image_%05d.jpg" % i
        img2label[img] = labels[i - 1]
    file_list = batch_images_from_tar(data_file, dataset_name, img2label)
118 119

    def reader():
120
        while True:
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
            with open(file_list, 'r') as f_list:
                for file in f_list:
                    file = file.strip()
                    batch = None
                    with open(file, 'rb') as f:
                        if six.PY2:
                            batch = pickle.load(f)
                        else:
                            batch = pickle.load(f, encoding='bytes')

                        if six.PY3:
                            batch = cpt.to_text(batch)
                        data_batch = batch['data']
                        labels_batch = batch['label']
                        for sample, label in six.moves.zip(data_batch,
                                                           labels_batch):
                            yield sample, int(label) - 1
138 139
            if not cycle:
                break
140

W
wanghaoshuang 已提交
141
    if use_xmap:
C
chengduo 已提交
142
        return xmap_readers(mapper, reader, min(4, cpu_count()), buffered_size)
143 144
    else:
        return map_readers(mapper, reader)
145 146


147 148 149 150
@deprecated(
    since="2.0.0",
    update_to="paddle.vision.datasets.Flowers",
    reason="Please use new dataset API which supports paddle.io.DataLoader")
151
def train(mapper=train_mapper, buffered_size=1024, use_xmap=True, cycle=False):
152
    '''
153 154 155
    Create flowers training set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
156 157 158 159 160 161
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
    :param mapper:  a function to map sample.
    :type mapper: callable
162 163
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
164 165
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
166 167 168 169 170 171
    :return: train data reader
    :rtype: callable
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
172 173 174 175 176 177
        download(SETID_URL, 'flowers', SETID_MD5),
        TRAIN_FLAG,
        mapper,
        buffered_size,
        use_xmap,
        cycle=cycle)
178 179


180 181 182 183
@deprecated(
    since="2.0.0",
    update_to="paddle.vision.datasets.Flowers",
    reason="Please use new dataset API which supports paddle.io.DataLoader")
184
def test(mapper=test_mapper, buffered_size=1024, use_xmap=True, cycle=False):
185
    '''
186 187 188
    Create flowers test set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
189 190 191 192 193 194
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
    :param mapper:  a function to map sample.
    :type mapper: callable
195 196
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
197 198
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
199 200 201 202 203 204
    :return: test data reader
    :rtype: callable
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
205 206 207 208 209 210
        download(SETID_URL, 'flowers', SETID_MD5),
        TEST_FLAG,
        mapper,
        buffered_size,
        use_xmap,
        cycle=cycle)
211 212


213 214 215 216
@deprecated(
    since="2.0.0",
    update_to="paddle.vision.datasets.Flowers",
    reason="Please use new dataset API which supports paddle.io.DataLoader")
217
def valid(mapper=test_mapper, buffered_size=1024, use_xmap=True):
218
    '''
219 220 221
    Create flowers validation set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
222 223 224 225
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
226 227 228 229 230 231
    :param mapper:  a function to map sample.
    :type mapper: callable
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
    :return: test data reader
    :rtype: callable
232 233 234 235
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
W
wanghaoshuang 已提交
236 237
        download(SETID_URL, 'flowers', SETID_MD5), VALID_FLAG, mapper,
        buffered_size, use_xmap)
238 239 240 241 242 243


def fetch():
    download(DATA_URL, 'flowers', DATA_MD5)
    download(LABEL_URL, 'flowers', LABEL_MD5)
    download(SETID_URL, 'flowers', SETID_MD5)