flowers.py 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module will download dataset from
16
http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html
17 18
and parse train/test set intopaddle reader creators.

19
This set contains images of flowers belonging to 102 different categories.
20 21 22 23 24 25
The images were acquired by searching the web and taking pictures. There are a
minimum of 40 images for each category.

The database was used in:

Nilsback, M-E. and Zisserman, A. Automated flower classification over a large
26 27
 number of classes.Proceedings of the Indian Conference on Computer Vision,
Graphics and Image Processing (2008)
28 29 30
http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.{pdf,ps.gz}.

"""
31 32 33

from __future__ import print_function

34
import itertools
35
import functools
36
from .common import download
37 38
import tarfile
import scipy.io as scio
39
from paddle.dataset.image import *
40
from paddle.reader import map_readers, xmap_readers
M
minqiyang 已提交
41
from paddle import compat as cpt
42 43
import os
import numpy as np
44
from multiprocessing import cpu_count
M
minqiyang 已提交
45
import six
46
from six.moves import cPickle as pickle
47 48
__all__ = ['train', 'test', 'valid']

49 50 51
DATA_URL = 'http://paddlemodels.bj.bcebos.com/flowers/102flowers.tgz'
LABEL_URL = 'http://paddlemodels.bj.bcebos.com/flowers/imagelabels.mat'
SETID_URL = 'http://paddlemodels.bj.bcebos.com/flowers/setid.mat'
M
minqiyang 已提交
52
DATA_MD5 = '52808999861908f626f3c1f4e79d11fa'
53 54
LABEL_MD5 = 'e0620be6f572b9609742df49c70aed4d'
SETID_MD5 = 'a5357ecc9cb78c4bef273ce3793fc85c'
W
wanghaoshuang 已提交
55 56 57 58 59 60
# In official 'readme', tstid is the flag of test data
# and trnid is the flag of train data. But test data is more than train data.
# So we exchange the train data and test data.
TRAIN_FLAG = 'tstid'
TEST_FLAG = 'trnid'
VALID_FLAG = 'valid'
61 62


63
def default_mapper(is_train, sample):
64 65 66 67
    '''
    map image bytes data to type needed by model input layer
    '''
    img, label = sample
68
    img = load_image_bytes(img)
D
dangqingqing 已提交
69
    img = simple_transform(
D
dangqingqing 已提交
70
        img, 256, 224, is_train, mean=[103.94, 116.78, 123.68])
71 72 73
    return img.flatten().astype('float32'), label


74 75 76 77
train_mapper = functools.partial(default_mapper, True)
test_mapper = functools.partial(default_mapper, False)


78 79 80
def reader_creator(data_file,
                   label_file,
                   setid_file,
81
                   dataset_name,
82
                   mapper,
83
                   buffered_size=1024,
84 85
                   use_xmap=True,
                   cycle=False):
86
    '''
87
    1. read images from tar file and
88 89
        merge images into batch files in 102flowers.tgz_batch/
    2. get a reader to read sample from batch file
90 91

    :param data_file: downloaded data file
92
    :type data_file: string
93
    :param label_file: downloaded label file
94 95 96 97
    :type label_file: string
    :param setid_file: downloaded setid file containing information
                        about how to split dataset
    :type setid_file: string
98 99
    :param dataset_name: data set name (tstid|trnid|valid)
    :type dataset_name: string
100
    :param mapper: a function to map image bytes data to type
101 102
                    needed by model input layer
    :type mapper: callable
103 104
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
105 106
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
107 108 109
    :return: data reader
    :rtype: callable
    '''
110 111 112 113 114 115 116
    labels = scio.loadmat(label_file)['labels'][0]
    indexes = scio.loadmat(setid_file)[dataset_name][0]
    img2label = {}
    for i in indexes:
        img = "jpg/image_%05d.jpg" % i
        img2label[img] = labels[i - 1]
    file_list = batch_images_from_tar(data_file, dataset_name, img2label)
117 118

    def reader():
119
        while True:
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
            with open(file_list, 'r') as f_list:
                for file in f_list:
                    file = file.strip()
                    batch = None
                    with open(file, 'rb') as f:
                        if six.PY2:
                            batch = pickle.load(f)
                        else:
                            batch = pickle.load(f, encoding='bytes')

                        if six.PY3:
                            batch = cpt.to_text(batch)
                        data_batch = batch['data']
                        labels_batch = batch['label']
                        for sample, label in six.moves.zip(data_batch,
                                                           labels_batch):
                            yield sample, int(label) - 1
137 138
            if not cycle:
                break
139

W
wanghaoshuang 已提交
140
    if use_xmap:
C
chengduo 已提交
141
        return xmap_readers(mapper, reader, min(4, cpu_count()), buffered_size)
142 143
    else:
        return map_readers(mapper, reader)
144 145


146
def train(mapper=train_mapper, buffered_size=1024, use_xmap=True, cycle=False):
147
    '''
148 149 150
    Create flowers training set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
151 152 153 154 155 156
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
    :param mapper:  a function to map sample.
    :type mapper: callable
157 158
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
159 160
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
161 162 163 164 165 166
    :return: train data reader
    :rtype: callable
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
167 168 169 170 171 172
        download(SETID_URL, 'flowers', SETID_MD5),
        TRAIN_FLAG,
        mapper,
        buffered_size,
        use_xmap,
        cycle=cycle)
173 174


175
def test(mapper=test_mapper, buffered_size=1024, use_xmap=True, cycle=False):
176
    '''
177 178 179
    Create flowers test set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
180 181 182 183 184 185
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
    :param mapper:  a function to map sample.
    :type mapper: callable
186 187
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
188 189
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
190 191 192 193 194 195
    :return: test data reader
    :rtype: callable
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
196 197 198 199 200 201
        download(SETID_URL, 'flowers', SETID_MD5),
        TEST_FLAG,
        mapper,
        buffered_size,
        use_xmap,
        cycle=cycle)
202 203


204
def valid(mapper=test_mapper, buffered_size=1024, use_xmap=True):
205
    '''
206 207 208
    Create flowers validation set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
209 210 211 212
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
213 214 215 216 217 218
    :param mapper:  a function to map sample.
    :type mapper: callable
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
    :return: test data reader
    :rtype: callable
219 220 221 222
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
W
wanghaoshuang 已提交
223 224
        download(SETID_URL, 'flowers', SETID_MD5), VALID_FLAG, mapper,
        buffered_size, use_xmap)
225 226 227 228 229 230


def fetch():
    download(DATA_URL, 'flowers', DATA_MD5)
    download(LABEL_URL, 'flowers', LABEL_MD5)
    download(SETID_URL, 'flowers', SETID_MD5)