slice_op.h 24.1 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
17
#include <utility>
W
whs 已提交
18 19
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
20
#include "paddle/fluid/operators/eigen/eigen_function.h"
21
#include "paddle/fluid/operators/math/math_function.h"
22
#include "paddle/fluid/operators/utils.h"
W
whs 已提交
23 24 25

namespace paddle {
namespace operators {
26 27
using Tensor = framework::Tensor;

W
whs 已提交
28 29 30 31
template <typename DeviceContext, typename T>
class SliceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
32 33 34 35 36 37
    const framework::Variable* input_var = ctx.InputVar("Input");
    bool is_tensor_array = input_var->IsType<framework::LoDTensorArray>();
    int rank = is_tensor_array
                   ? 1
                   : ctx.Input<framework::Tensor>("Input")->dims().size();

W
whs 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    switch (rank) {
      case 1:
        SliceCompute<1>(ctx);
        break;
      case 2:
        SliceCompute<2>(ctx);
        break;
      case 3:
        SliceCompute<3>(ctx);
        break;
      case 4:
        SliceCompute<4>(ctx);
        break;
      case 5:
        SliceCompute<5>(ctx);
        break;
      case 6:
        SliceCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void SliceCompute(const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
65 66 67 68
    const framework::Variable* input_var = context.InputVar("Input");
    framework::Variable* out_var = context.OutputVar("Out");
    bool input_is_tensor_array = input_var->IsType<framework::LoDTensorArray>();
    bool out_is_tensor_array = out_var->IsType<framework::LoDTensorArray>();
H
Hongyu Liu 已提交
69

70
    auto axes = context.Attr<std::vector<int>>("axes");
71

72 73 74 75
    auto starts_int = context.Attr<std::vector<int>>("starts");
    std::vector<int64_t> starts(starts_int.begin(), starts_int.end());
    auto ends_int = context.Attr<std::vector<int>>("ends");
    std::vector<int64_t> ends(ends_int.begin(), ends_int.end());
H
Hongyu Liu 已提交
76
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    auto infer_flags = context.Attr<std::vector<int>>("infer_flags");
    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");

    bool need_infer = false;
    if (context.HasInput("StartsTensor") || context.HasInput("EndsTensor")) {
      need_infer = true;
    }
    if (list_new_starts_tensor.size() > 0 || list_new_ends_tensor.size() > 0) {
      need_infer = true;
    }
    if (need_infer) {
      if (context.HasInput("StartsTensor")) {
        auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
93
        starts = GetDataFromTensor<int64_t>(starts_tensor);
94
      } else if (list_new_starts_tensor.size() > 0) {
95
        starts = GetDataFromTensorList<int64_t>(list_new_starts_tensor);
96 97 98
      }
      if (context.HasInput("EndsTensor")) {
        auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
99
        ends = GetDataFromTensor<int64_t>(ends_tensor);
100
      } else if (list_new_ends_tensor.size() > 0) {
101
        ends = GetDataFromTensorList<int64_t>(list_new_ends_tensor);
102
      }
103 104 105 106 107 108 109 110 111 112 113 114
    }
    PADDLE_ENFORCE_EQ(
        starts.size(), axes.size(),
        platform::errors::InvalidArgument(
            "The size of starts must be equal to the size of axes."));
    PADDLE_ENFORCE_EQ(
        ends.size(), axes.size(),
        platform::errors::InvalidArgument(
            "The size of ends must be equal to the size of axes."));
    if (input_is_tensor_array) {
      auto in_array = context.Input<framework::LoDTensorArray>("Input");
      // If the input is LoDTensorArray, the rank of input is 1.
115 116 117 118 119 120
      int64_t in_size = in_array->size();
      int64_t start = starts[0] < 0 ? (starts[0] + in_size) : starts[0];
      int64_t end = ends[0] < 0 ? (ends[0] + in_size) : ends[0];

      start = std::max(start, static_cast<int64_t>(0));
      end = std::max(end, static_cast<int64_t>(0));
121 122 123 124 125
      end = std::min(end, in_size);

      PADDLE_ENFORCE_GT(end, start,
                        platform::errors::InvalidArgument(
                            "Attr(ends) should be greater than attr(starts) in "
126 127
                            "slice op. But received end = %d, start = %d.",
                            ends[0], starts[0]));
128
      int64_t out_size = end - start;
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

      if (out_is_tensor_array) {
        auto out_array = context.Output<framework::LoDTensorArray>("Out");
        out_array->resize(out_size);

        for (int i = 0; i < out_size; ++i) {
          auto* out_tensor = &out_array->at(i);
          auto in_tensor = in_array->at(i + start);
          out_tensor->set_lod(in_tensor.lod());
          if (in_tensor.memory_size() > 0) {
            TensorCopy(in_tensor, context.GetPlace(), out_tensor);
          } else {
            VLOG(10)
                << "WARNING: The input tensor 'x_tensor' holds no memory, so "
                   "nothing has been written to output array["
                << i << "].";
          }
        }
      } else {
        auto out = context.Output<framework::Tensor>("Out");
        auto in_tensor = in_array->at(start);
        TensorCopy(in_tensor, context.GetPlace(), out);
      }

      return;
    }

    auto in = context.Input<framework::Tensor>("Input");
    auto out = context.Output<framework::Tensor>("Out");

    auto out_dims = out->dims();
    auto in_dims = in->dims();
    if (need_infer) {
162
      out_dims = in_dims;
163
      int64_t dim_value, start, end;
164 165 166 167 168 169 170 171 172 173 174 175 176 177
      for (size_t i = 0; i < axes.size(); ++i) {
        dim_value = out_dims[axes[i]];
        if (dim_value > 0) {
          // when end = start+1 and start == -1
          if (starts[i] == -1 && ends[i] == 0 && infer_flags[i] == -1) {
            auto ret =
                std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]);
            if (ret != decrease_axis.end()) {
              ends[i] = 10000000;
            }
          }

          start = starts[i] < 0 ? (starts[i] + dim_value) : starts[i];
          end = ends[i] < 0 ? (ends[i] + dim_value) : ends[i];
178 179
          start = std::max(start, static_cast<int64_t>(0));
          end = std::max(end, static_cast<int64_t>(0));
180
          end = std::min(end, dim_value);
181 182 183 184
          PADDLE_ENFORCE_GT(
              end, start,
              platform::errors::InvalidArgument(
                  "Attr(ends) should be greater than attr(starts) in "
185 186
                  "slice op. But received end = %d, start = %d.",
                  ends[i], starts[i]));
187 188 189 190 191 192
          out_dims[axes[i]] = end - start;
        }
      }
      out->Resize(out_dims);
      // generate new shape
      if (decrease_axis.size() > 0) {
193
        std::vector<int64_t> new_out_shape;
194
        for (size_t i = 0; i < decrease_axis.size(); ++i) {
T
Thunderbrook 已提交
195 196 197
          PADDLE_ENFORCE_EQ(
              out_dims[decrease_axis[i]], 1,
              platform::errors::InvalidArgument("decrease dim should be 1"));
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
          out_dims[decrease_axis[i]] = 0;
        }

        for (int i = 0; i < out_dims.size(); ++i) {
          if (out_dims[i] != 0) {
            new_out_shape.push_back(out_dims[i]);
          }
        }
        if (new_out_shape.size() == 0) {
          new_out_shape.push_back(1);
        }

        out_dims = framework::make_ddim(new_out_shape);
      }
    }

    // resize out_dims
H
Hongyu Liu 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    if (decrease_axis.size() > 0) {
      if (decrease_axis.size() == (size_t)in_dims.size()) {
        std::vector<int> vec_origin_out_shape(decrease_axis.size(), 1);
        out->Resize(framework::make_ddim(vec_origin_out_shape));
      } else {
        std::vector<int> vec_origin_out_shape(
            out_dims.size() + decrease_axis.size(), -1);

        for (size_t i = 0; i < decrease_axis.size(); ++i) {
          vec_origin_out_shape[decrease_axis[i]] = 1;
        }

        int index = 0;
        for (size_t i = 0; i < vec_origin_out_shape.size(); ++i) {
          if (vec_origin_out_shape[i] == -1) {
            vec_origin_out_shape[i] = out_dims[index];
            ++index;
          }
        }

        out->Resize(framework::make_ddim(vec_origin_out_shape));
      }
    }

    out->mutable_data<T>(context.GetPlace());
W
whs 已提交
240

H
Hongyu Liu 已提交
241
    auto new_out_dims = out->dims();
242 243
    auto offsets = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto extents = Eigen::DSizes<Eigen::DenseIndex, D>();
W
whs 已提交
244 245
    for (size_t i = 0; i < D; ++i) {
      offsets[i] = 0;
H
Hongyu Liu 已提交
246
      extents[i] = new_out_dims[i];
W
whs 已提交
247
    }
248
    int64_t start;
W
whs 已提交
249 250 251 252 253
    for (size_t i = 0; i < axes.size(); ++i) {
      start = starts[i];
      if (start < 0) {
        start = (start + in_dims[axes[i]]);
      }
254
      start = std::max(start, static_cast<int64_t>(0));
W
whs 已提交
255 256 257 258 259 260 261
      offsets[axes[i]] = start;
    }
    auto in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *in);
    auto out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
H
Hongyu Liu 已提交
262
            *out, new_out_dims);
263 264 265 266 267 268 269 270 271

    if (in->numel() <= Eigen::NumTraits<int>::highest()) {
      // similar to tf.slice:
      // if element number less than INT_MAX, change the type of index to int
      Eigen::DSizes<int, D> offsets_32bit, extents_32bit;
      for (size_t i = 0; i < D; i++) {
        offsets_32bit[i] = offsets[i];
        extents_32bit[i] = extents[i];
      }
272 273 274
      EigenSlice<std::decay_t<decltype(place)>, T, D>::Eval(
          place, framework::To32BitIndex(out_t), framework::To32BitIndex(in_t),
          offsets_32bit, extents_32bit);
275
    } else {
276 277
      EigenSlice<std::decay_t<decltype(place)>, T, D>::Eval(place, out_t, in_t,
                                                            offsets, extents);
278
    }
H
Hongyu Liu 已提交
279 280

    out->Resize(out_dims);
W
whs 已提交
281 282
  }
};
283 284 285 286 287

template <typename DeviceContext, typename T>
class SliceGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
288 289 290 291 292 293
    const framework::Variable* input_var = ctx.InputVar("Input");
    bool is_tensor_array = input_var->IsType<framework::LoDTensorArray>();
    size_t rank = is_tensor_array
                      ? 1
                      : ctx.Input<framework::Tensor>("Input")->dims().size();

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
    switch (rank) {
      case 1:
        SliceCompute<1>(ctx);
        break;
      case 2:
        SliceCompute<2>(ctx);
        break;
      case 3:
        SliceCompute<3>(ctx);
        break;
      case 4:
        SliceCompute<4>(ctx);
        break;
      case 5:
        SliceCompute<5>(ctx);
        break;
      case 6:
        SliceCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void SliceCompute(const framework::ExecutionContext& context) const {
    auto axes = context.Attr<std::vector<int>>("axes");
320 321 322 323 324 325 326

    auto starts_int = context.Attr<std::vector<int>>("starts");
    std::vector<int64_t> starts(starts_int.begin(), starts_int.end());

    auto ends_int = context.Attr<std::vector<int>>("ends");
    std::vector<int64_t> ends(ends_int.begin(), ends_int.end());

327 328 329 330 331 332
    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");

    if (list_new_starts_tensor.size() > 0) {
333
      starts = GetDataFromTensorList<int64_t>(list_new_starts_tensor);
334 335
    } else if (context.HasInput("StartsTensor")) {
      auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
336
      starts = GetDataFromTensor<int64_t>(starts_tensor);
337 338 339
    }

    if (list_new_ends_tensor.size() > 0) {
340
      ends = GetDataFromTensorList<int64_t>(list_new_ends_tensor);
341 342
    } else if (context.HasInput("EndsTensor")) {
      auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
343
      ends = GetDataFromTensor<int64_t>(ends_tensor);
344
    }
345 346 347 348 349 350 351 352 353 354 355 356 357
    framework::Variable* d_input_var =
        context.OutputVar(framework::GradVarName("Input"));
    const framework::Variable* d_out_var =
        context.InputVar(framework::GradVarName("Out"));
    bool d_input_is_tensor_array =
        d_input_var->IsType<framework::LoDTensorArray>();
    bool d_out_is_tensor_array = d_out_var->IsType<framework::LoDTensorArray>();

    if (d_input_is_tensor_array) {
      auto* input_array = context.Input<framework::LoDTensorArray>("Input");
      auto* d_input_array = context.Output<framework::LoDTensorArray>(
          framework::GradVarName("Input"));

358
      int64_t d_in_size = input_array->size();
359 360 361
      d_input_array->resize(d_in_size);
      // If the input is LoDTensorArray, the rank of input is 1.
      // So only use the 0th element of starts.
362 363
      int64_t start = starts[0] < 0 ? (starts[0] + d_in_size) : starts[0];
      start = std::max(start, static_cast<int64_t>(0));
364 365 366 367
      // set zero
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
      auto& dev_ctx = *pool.Get(context.GetPlace());
368
      T value = T(0);
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
      math::SetConstant<DeviceContext, T> functor;
      for (int i = 0; i < d_in_size; ++i) {
        auto dim = input_array->at(i).dims();
        d_input_array->at(i).Resize(dim);
        d_input_array->at(i).mutable_data<T>(context.GetPlace());
        functor(reinterpret_cast<const DeviceContext&>(dev_ctx),
                &d_input_array->at(i), static_cast<T>(value));
      }

      if (d_out_is_tensor_array) {
        auto* d_out_array = context.Input<framework::LoDTensorArray>(
            framework::GradVarName("Out"));
        int d_out_size = d_out_array->size();
        for (int i = 0; i < d_out_size; ++i) {
          TensorCopy(d_out_array->at(i), context.GetPlace(),
                     &(d_input_array->at(start + i)));
        }

      } else {
        auto* d_out =
            context.Input<framework::Tensor>(framework::GradVarName("Out"));
        TensorCopy(*d_out, context.GetPlace(), &(d_input_array->at(start)));
      }
      return;
    }

    auto* d_out =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));

    auto* d_input =
        context.Output<framework::Tensor>(framework::GradVarName("Input"));

    d_input->mutable_data<T>(context.GetPlace());

    auto out_dims = d_out->dims();
    auto in_dims = d_input->dims();
405

H
Hongyu Liu 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
    if (decrease_axis.size() > 0) {
      if (decrease_axis.size() == (size_t)in_dims.size()) {
        // all dims decrease
        std::vector<int> vec_origin_out_shape(decrease_axis.size(), 1);
        out_dims = framework::make_ddim(vec_origin_out_shape);
      } else {
        std::vector<int> vec_origin_out_shape(
            out_dims.size() + decrease_axis.size(), -1);

        for (size_t i = 0; i < decrease_axis.size(); ++i) {
          vec_origin_out_shape[decrease_axis[i]] = 1;
        }

        int index = 0;
        for (size_t i = 0; i < vec_origin_out_shape.size(); ++i) {
          if (vec_origin_out_shape[i] == -1) {
            vec_origin_out_shape[i] = out_dims[index];
            ++index;
          }
        }

        out_dims = framework::make_ddim(vec_origin_out_shape);
      }
    }

432 433
    auto offsets = Eigen::array<int64_t, D>();
    auto extents = Eigen::array<int64_t, D>();
434 435 436 437
    for (size_t i = 0; i < D; ++i) {
      offsets[i] = 0;
      extents[i] = out_dims[i];
    }
438
    int64_t start;
439 440 441 442 443
    for (size_t i = 0; i < axes.size(); ++i) {
      start = starts[i];
      if (start < 0) {
        start = (start + in_dims[axes[i]]);
      }
444
      start = std::max(start, static_cast<int64_t>(0));
445 446
      offsets[axes[i]] = start;
    }
447
    Eigen::array<std::pair<int64_t, int64_t>, D> paddings;
448 449 450 451
    for (size_t i = 0; i < paddings.size(); ++i) {
      paddings[i].first = offsets[i];
      paddings[i].second = (in_dims[i] - out_dims[i]) - offsets[i];
    }
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
    EigenPaddingCompute(context, d_input, in_dims, d_out, out_dims, paddings);
  }

  template <size_t D>
  void EigenPaddingCompute(
      const framework::ExecutionContext& context, framework::Tensor* d_input,
      const framework::DDim& in_dims, const framework::Tensor* d_out,
      const framework::DDim& out_dims,
      const Eigen::array<std::pair<int64_t, int64_t>, D>& paddings) const {
    if (D <= 3) {
      // if dimension less than 3, cannot reduce dimension
      LaunchEigenPadding(context, d_input, in_dims, d_out, out_dims, paddings);
    } else {  // else we can reduce dimension
      // count not-zero padding number, and record the dimension
      int need_pad_num = 0, pad_dim = -1;
      for (size_t i = 0; i < D; i++) {
        if (paddings[i].first != 0 || paddings[i].second != 0) {
          need_pad_num++;
          pad_dim = i;
        }
      }

      if (need_pad_num == 0) {
        // do not need padding, pass if data address same, else copy
        if (d_input->mutable_data<T>(context.GetPlace()) == d_out->data<T>()) {
          // inplace, do not any operator, pass
        } else {
          framework::TensorCopy(
              *d_out, context.GetPlace(),
              context.template device_context<platform::DeviceContext>(),
              d_input);
        }
      } else if (need_pad_num == 1) {
        // only need padding one dimension, we can reduce dimension.
        // only the padding dimension is available for us.
        // How to reduce dimension(5 to 3 for example):
        // before(D=5):
        // in_dims:        [x1,  x2,  x3,  x4,  x5]
        // padding.first:  [0,   0,   a,   0,  0]
        // padding.second: [0,   0,   b,   0,  0]
        //                     | |
        //                     V V
        // after(D=3):
        // reshaped_in_dims:        [x1*x2,  x3,  x4*x5]
        // reshaped_padding.first:  [0,      a,     0]
        // reshaped_padding.second: [0,      b,     0]

        if (pad_dim == D - 1) {
          // only last dimension need padding,
          // reshape the dimension of tensor in 2: [preceding, padding]
          std::vector<int64_t> in_tore_shape(2, 1), out_tore_shape(2, 1);
          Eigen::array<std::pair<int64_t, int64_t>, 2> reshaped_padding;

          // first dimension is the accumulate of preceding dimension
          for (int i = 0; i < pad_dim; i++) {
            in_tore_shape[0] *= in_dims[i];
            out_tore_shape[0] *= out_dims[i];
          }
          // second dimension is the padding dimension
          in_tore_shape[1] = in_dims[pad_dim];
          out_tore_shape[1] = out_dims[pad_dim];

          // convert array from std::vector to DDim
          framework::DDim reshaped_in_dims =
              framework::make_ddim(in_tore_shape);
          framework::DDim reshaped_out_dims =
              framework::make_ddim(out_tore_shape);

          // after reshape: the first dimension do not need padding,
          // set padding[0] zero
          reshaped_padding[0].first = reshaped_padding[0].second = 0;
          // the second dimension is the previous padding dimension
          reshaped_padding[1].first = paddings[pad_dim].first;
          reshaped_padding[1].second = paddings[pad_dim].second;

          LaunchEigenPadding(context, d_input, reshaped_in_dims, d_out,
                             reshaped_out_dims, reshaped_padding);
        } else if (pad_dim == 0) {
          // only first dimension need padding,
          // reshape the dimension of tensor in 2: [padding, succeeding]
          // similar to (D - 1)
          std::vector<int64_t> in_tore_shape(2, 1), out_tore_shape(2, 1);
          Eigen::array<std::pair<int64_t, int64_t>, 2> reshaped_padding;

          // first dimension is the padding dimension
          in_tore_shape[0] = in_dims[pad_dim];
          out_tore_shape[0] = out_dims[pad_dim];
          // sencond dimension is the accumulate of succeeding dimension
          for (size_t i = pad_dim + 1; i < D; i++) {
            in_tore_shape[1] *= in_dims[i];
            out_tore_shape[1] *= out_dims[i];
          }

          // convert array from std::vector to DDim
          framework::DDim reshaped_in_dims =
              framework::make_ddim(in_tore_shape);
          framework::DDim reshaped_out_dims =
              framework::make_ddim(out_tore_shape);

          // after reshape:
          // the first dimension is the previous padding dimension
          reshaped_padding[0].first = paddings[pad_dim].first;
          reshaped_padding[0].second = paddings[pad_dim].second;
          // the second dimension do not need padding, set padding[1] zero
          reshaped_padding[1].first = reshaped_padding[1].second = 0;

          LaunchEigenPadding(context, d_input, reshaped_in_dims, d_out,
                             reshaped_out_dims, reshaped_padding);
        } else {
          // other dimension need padding
          // reshape the dimension of tensor in 3:
          // [preceding, padding, succeeding]
          std::vector<int64_t> in_tore_shape(3, 1), out_tore_shape(3, 1);
          Eigen::array<std::pair<int64_t, int64_t>, 3> reshaped_padding;

          // first dimension is the accumulate of preceding dimension
          for (int i = 0; i < pad_dim; i++) {
            in_tore_shape[0] *= in_dims[i];
            out_tore_shape[0] *= out_dims[i];
          }
          // second dimension is the padding dimension
          in_tore_shape[1] = in_dims[pad_dim];
          out_tore_shape[1] = out_dims[pad_dim];
          // third dimension is the accumulate of succeeding dimension
          for (size_t i = pad_dim + 1; i < D; i++) {
            in_tore_shape[2] *= in_dims[i];
            out_tore_shape[2] *= out_dims[i];
          }

          // convert array from std::vector to DDim
          framework::DDim reshaped_in_dims =
              framework::make_ddim(in_tore_shape);
          framework::DDim reshaped_out_dims =
              framework::make_ddim(out_tore_shape);

          // after reshape:
          // the first dimension do not need padding, set padding[0] zero
          reshaped_padding[0].first = reshaped_padding[2].second = 0;
          // the second dimension is the previous padding dimension
          reshaped_padding[1].first = paddings[pad_dim].first;
          reshaped_padding[1].second = paddings[pad_dim].second;
          // the third dimension do not need padding, set padding[2] zero
          reshaped_padding[2].first = reshaped_padding[2].second = 0;

          LaunchEigenPadding(context, d_input, reshaped_in_dims, d_out,
                             reshaped_out_dims, reshaped_padding);
        }
      } else {
        // need padding at many dimension, cannot reduce dimension
        LaunchEigenPadding(context, d_input, in_dims, d_out, out_dims,
                           paddings);
      }
    }
  }

  template <size_t D>
  void LaunchEigenPadding(
      const framework::ExecutionContext& context, framework::Tensor* d_input,
      const framework::DDim& in_dims, const framework::Tensor* d_out,
      const framework::DDim& out_dims,
      const Eigen::array<std::pair<int64_t, int64_t>, D>& paddings) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
615 616
    auto d_in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
617
            *d_input, in_dims);
618 619
    auto d_out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
H
Hongyu Liu 已提交
620
            *d_out, out_dims);
621 622 623 624 625 626 627 628 629

    if (d_input->numel() <= Eigen::NumTraits<int>::highest()) {
      // similar to tf.pad:
      // if element number less than INT_MAX, change the type of index to int
      Eigen::array<std::pair<int, int>, D> paddings_32bit;
      for (size_t i = 0; i < D; i++) {
        paddings_32bit[i] =
            std::make_pair(paddings[i].first, paddings[i].second);
      }
630 631 632
      EigenPad<std::decay_t<decltype(place)>, T, D>::Eval(
          place, framework::To32BitIndex(d_in_t),
          framework::To32BitIndex(d_out_t), paddings_32bit, static_cast<T>(0));
633
    } else {
634 635
      EigenPad<std::decay_t<decltype(place)>, T, D>::Eval(
          place, d_in_t, d_out_t, paddings, static_cast<T>(0));
636
    }
637 638
  }
};
W
whs 已提交
639 640
}  // namespace operators
}  // namespace paddle