slice_op.h 11.7 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
17
#include <utility>
W
whs 已提交
18 19 20 21 22
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
using Tensor = framework::Tensor;

inline std::vector<int> get_new_data_from_tensorlist(
    const std::vector<const Tensor*>& list_new_data_tensor) {
  // get tensor from
  std::vector<int> vec_new_data;
  for (size_t i = 0; i < list_new_data_tensor.size(); ++i) {
    auto tensor = list_new_data_tensor[i];
    PADDLE_ENFORCE_EQ(tensor->dims(), framework::make_ddim({1}),
                      "shape of dim tensor should be [1]");
    if (platform::is_gpu_place(tensor->place())) {
      framework::Tensor temp;
      TensorCopySync(*tensor, platform::CPUPlace(), &temp);
      vec_new_data.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
    } else {
      vec_new_data.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
    }
  }
  return vec_new_data;
}
inline std::vector<int> get_new_data_from_tensor(
    const Tensor* new_data_tensor) {
  std::vector<int> vec_new_data;
  auto* new_data = new_data_tensor->data<int>();
  framework::Tensor cpu_starts_tensor;
  if (platform::is_gpu_place(new_data_tensor->place())) {
    TensorCopySync(*new_data_tensor, platform::CPUPlace(), &cpu_starts_tensor);
    new_data = cpu_starts_tensor.data<int>();
  }
  vec_new_data =
      std::vector<int>(new_data, new_data + new_data_tensor->numel());
  return vec_new_data;
}
W
whs 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

template <typename DeviceContext, typename T>
class SliceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    int rank = ctx.Input<framework::Tensor>("Input")->dims().size();
    switch (rank) {
      case 1:
        SliceCompute<1>(ctx);
        break;
      case 2:
        SliceCompute<2>(ctx);
        break;
      case 3:
        SliceCompute<3>(ctx);
        break;
      case 4:
        SliceCompute<4>(ctx);
        break;
      case 5:
        SliceCompute<5>(ctx);
        break;
      case 6:
        SliceCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void SliceCompute(const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto in = context.Input<framework::Tensor>("Input");
    auto out = context.Output<framework::Tensor>("Out");
    auto out_dims = out->dims();
    auto in_dims = in->dims();
H
Hongyu Liu 已提交
93

94 95 96
    auto axes = context.Attr<std::vector<int>>("axes");
    auto starts = context.Attr<std::vector<int>>("starts");
    auto ends = context.Attr<std::vector<int>>("ends");
H
Hongyu Liu 已提交
97
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    auto infer_flags = context.Attr<std::vector<int>>("infer_flags");

    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");

    bool need_infer = false;
    if (context.HasInput("StartsTensor") || context.HasInput("EndsTensor")) {
      need_infer = true;
    }
    if (list_new_starts_tensor.size() > 0 || list_new_ends_tensor.size() > 0) {
      need_infer = true;
    }

    if (need_infer) {
      if (context.HasInput("StartsTensor")) {
        auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
        starts = get_new_data_from_tensor(starts_tensor);
      } else if (list_new_starts_tensor.size() > 0) {
        starts = get_new_data_from_tensorlist(list_new_starts_tensor);
      }
      PADDLE_ENFORCE_EQ(
          starts.size(), axes.size(),
          "The size of starts must be equal to the size of axes.");
      if (context.HasInput("EndsTensor")) {
        auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
        ends = get_new_data_from_tensor(ends_tensor);
      } else if (list_new_ends_tensor.size() > 0) {
        ends = get_new_data_from_tensorlist(list_new_ends_tensor);
      }
      PADDLE_ENFORCE_EQ(ends.size(), axes.size(),
                        "The size of ends must be equal to the size of axes.");
      out_dims = in_dims;
      int dim_value, start, end;
      for (size_t i = 0; i < axes.size(); ++i) {
        dim_value = out_dims[axes[i]];
        if (dim_value > 0) {
          // when end = start+1 and start == -1
          if (starts[i] == -1 && ends[i] == 0 && infer_flags[i] == -1) {
            auto ret =
                std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]);
            if (ret != decrease_axis.end()) {
              ends[i] = 10000000;
            }
          }

          start = starts[i] < 0 ? (starts[i] + dim_value) : starts[i];
          end = ends[i] < 0 ? (ends[i] + dim_value) : ends[i];
          start = std::max(start, 0);
          end = std::max(end, 0);
          end = std::min(end, dim_value);
          PADDLE_ENFORCE_GT(end, start, "end should greater than start");
          out_dims[axes[i]] = end - start;
        }
      }
      out->Resize(out_dims);
      // generate new shape
      if (decrease_axis.size() > 0) {
        std::vector<int> new_out_shape;
        for (size_t i = 0; i < decrease_axis.size(); ++i) {
          PADDLE_ENFORCE_EQ(out_dims[decrease_axis[i]], 1,
                            "decrease dim should be 1");
          out_dims[decrease_axis[i]] = 0;
        }

        for (int i = 0; i < out_dims.size(); ++i) {
          if (out_dims[i] != 0) {
            new_out_shape.push_back(out_dims[i]);
          }
        }
        if (new_out_shape.size() == 0) {
          new_out_shape.push_back(1);
        }

        out_dims = framework::make_ddim(new_out_shape);
      }
    }

    // resize out_dims
H
Hongyu Liu 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    if (decrease_axis.size() > 0) {
      if (decrease_axis.size() == (size_t)in_dims.size()) {
        std::vector<int> vec_origin_out_shape(decrease_axis.size(), 1);
        out->Resize(framework::make_ddim(vec_origin_out_shape));
      } else {
        std::vector<int> vec_origin_out_shape(
            out_dims.size() + decrease_axis.size(), -1);

        for (size_t i = 0; i < decrease_axis.size(); ++i) {
          vec_origin_out_shape[decrease_axis[i]] = 1;
        }

        int index = 0;
        for (size_t i = 0; i < vec_origin_out_shape.size(); ++i) {
          if (vec_origin_out_shape[i] == -1) {
            vec_origin_out_shape[i] = out_dims[index];
            ++index;
          }
        }

        out->Resize(framework::make_ddim(vec_origin_out_shape));
      }
    }

    out->mutable_data<T>(context.GetPlace());
W
whs 已提交
203

H
Hongyu Liu 已提交
204
    auto new_out_dims = out->dims();
W
whs 已提交
205 206 207 208
    auto offsets = Eigen::array<int, D>();
    auto extents = Eigen::array<int, D>();
    for (size_t i = 0; i < D; ++i) {
      offsets[i] = 0;
H
Hongyu Liu 已提交
209
      extents[i] = new_out_dims[i];
W
whs 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    }
    int start;
    for (size_t i = 0; i < axes.size(); ++i) {
      start = starts[i];
      if (start < 0) {
        start = (start + in_dims[axes[i]]);
      }
      start = std::max(start, 0);
      offsets[axes[i]] = start;
    }
    auto in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *in);
    auto out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
H
Hongyu Liu 已提交
225
            *out, new_out_dims);
W
whs 已提交
226
    out_t.device(place) = in_t.slice(offsets, extents);
H
Hongyu Liu 已提交
227 228

    out->Resize(out_dims);
W
whs 已提交
229 230
  }
};
231 232 233 234 235

template <typename DeviceContext, typename T>
class SliceGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
H
Hongyu Liu 已提交
236
    size_t rank = ctx.Input<framework::Tensor>("Input")->dims().size();
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
    switch (rank) {
      case 1:
        SliceCompute<1>(ctx);
        break;
      case 2:
        SliceCompute<2>(ctx);
        break;
      case 3:
        SliceCompute<3>(ctx);
        break;
      case 4:
        SliceCompute<4>(ctx);
        break;
      case 5:
        SliceCompute<5>(ctx);
        break;
      case 6:
        SliceCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void SliceCompute(const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto* d_out =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* d_input =
        context.Output<framework::Tensor>(framework::GradVarName("Input"));
    d_input->mutable_data<T>(context.GetPlace());
    auto out_dims = d_out->dims();
    auto in_dims = d_input->dims();
    auto axes = context.Attr<std::vector<int>>("axes");
    auto starts = context.Attr<std::vector<int>>("starts");
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    auto ends = context.Attr<std::vector<int>>("ends");

    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");

    if (list_new_starts_tensor.size() > 0) {
      starts = get_new_data_from_tensorlist(list_new_starts_tensor);
    } else if (context.HasInput("StartsTensor")) {
      auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
      starts = get_new_data_from_tensor(starts_tensor);
    }

    if (list_new_ends_tensor.size() > 0) {
      ends = get_new_data_from_tensorlist(list_new_ends_tensor);
    } else if (context.HasInput("EndsTensor")) {
      auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
      ends = get_new_data_from_tensor(ends_tensor);
    }
293

H
Hongyu Liu 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
    if (decrease_axis.size() > 0) {
      if (decrease_axis.size() == (size_t)in_dims.size()) {
        // all dims decrease
        std::vector<int> vec_origin_out_shape(decrease_axis.size(), 1);
        out_dims = framework::make_ddim(vec_origin_out_shape);
      } else {
        std::vector<int> vec_origin_out_shape(
            out_dims.size() + decrease_axis.size(), -1);

        for (size_t i = 0; i < decrease_axis.size(); ++i) {
          vec_origin_out_shape[decrease_axis[i]] = 1;
        }

        int index = 0;
        for (size_t i = 0; i < vec_origin_out_shape.size(); ++i) {
          if (vec_origin_out_shape[i] == -1) {
            vec_origin_out_shape[i] = out_dims[index];
            ++index;
          }
        }

        out_dims = framework::make_ddim(vec_origin_out_shape);
      }
    }

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    auto offsets = Eigen::array<int, D>();
    auto extents = Eigen::array<int, D>();
    for (size_t i = 0; i < D; ++i) {
      offsets[i] = 0;
      extents[i] = out_dims[i];
    }
    int start;
    for (size_t i = 0; i < axes.size(); ++i) {
      start = starts[i];
      if (start < 0) {
        start = (start + in_dims[axes[i]]);
      }
      start = std::max(start, 0);
      offsets[axes[i]] = start;
    }
    Eigen::array<std::pair<int, int>, D> paddings;
    for (size_t i = 0; i < paddings.size(); ++i) {
      paddings[i].first = offsets[i];
      paddings[i].second = (in_dims[i] - out_dims[i]) - offsets[i];
    }
    auto d_in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *d_input);
    auto d_out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
H
Hongyu Liu 已提交
345
            *d_out, out_dims);
346 347 348
    d_in_t.device(place) = d_out_t.pad(paddings, 0);
  }
};
W
whs 已提交
349 350
}  // namespace operators
}  // namespace paddle