evaluators.py 24.7 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer.config_parser import *
from default_decorators import *

Q
qijun 已提交
18 19 20 21 22 23
__all__ = [
    "evaluator_base", "classification_error_evaluator", "auc_evaluator",
    "pnpair_evaluator", "precision_recall_evaluator", "ctc_error_evaluator",
    "chunk_evaluator", "sum_evaluator", "column_sum_evaluator",
    "value_printer_evaluator", "gradient_printer_evaluator",
    "maxid_printer_evaluator", "maxframe_printer_evaluator",
Y
yangyaming 已提交
24 25
    "seqtext_printer_evaluator", "classification_error_printer_evaluator",
    "detection_map_evaluator"
Q
qijun 已提交
26
]
Z
zhangjinchao01 已提交
27 28 29 30 31 32 33 34


class EvaluatorAttribute(object):
    FOR_CLASSIFICATION = 1
    FOR_REGRESSION = 1 << 1
    FOR_RANK = 1 << 2
    FOR_PRINT = 1 << 3
    FOR_UTILS = 1 << 4
Y
yangyaming 已提交
35
    FOR_DETECTION = 1 << 5
Z
zhangjinchao01 已提交
36 37

    KEYS = [
Q
qijun 已提交
38
        "for_classification", "for_regression", "for_rank", "for_print",
Y
yangyaming 已提交
39
        "for_utils", "for_detection"
Z
zhangjinchao01 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    ]

    @staticmethod
    def to_key(idx):
        tmp = 1
        for i in xrange(0, len(EvaluatorAttribute.KEYS)):
            if idx == tmp:
                return EvaluatorAttribute.KEYS[i]
            else:
                tmp = (tmp << 1)


def evaluator(*attrs):
    def impl(method):
        for attr in attrs:
            setattr(method, EvaluatorAttribute.to_key(attr), True)
        method.is_evaluator = True
        return method
Q
qijun 已提交
58

Z
zhangjinchao01 已提交
59 60
    return impl

Q
qijun 已提交
61

Y
yangyaming 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
def evaluator_base(input,
                   type,
                   label=None,
                   weight=None,
                   name=None,
                   chunk_scheme=None,
                   num_chunk_types=None,
                   classification_threshold=None,
                   positive_label=None,
                   dict_file=None,
                   result_file=None,
                   num_results=None,
                   delimited=None,
                   top_k=None,
                   excluded_chunk_types=None,
                   overlap_threshold=None,
                   background_id=None,
                   evaluate_difficult=None,
                   ap_type=None):
Z
zhangjinchao01 已提交
81
    """
L
luotao02 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    Evaluator will evaluate the network status while training/testing.

    User can use evaluator by classify/regression job. For example.

    ..  code-block:: python

        classify(prediction, output, evaluator=classification_error_evaluator)

    And user could define evaluator separately as follow.

    ..  code-block:: python

        classification_error_evaluator("ErrorRate", prediction, label)

    The evaluator often contains a name parameter. It will also be printed when
    evaluating network. The printed information may look like the following.

    ..  code-block:: text

         Batch=200 samples=20000 AvgCost=0.679655 CurrentCost=0.662179 Eval:
         classification_error_evaluator=0.4486
         CurrentEval: ErrorRate=0.3964
104

Z
zhangjinchao01 已提交
105 106 107 108 109 110 111 112
    :param input: Input layers, a object of LayerOutput or a list of
                  LayerOutput.
    :type input: list|LayerOutput
    :param label: An input layer containing the ground truth label.
    :type label: LayerOutput|None
    :param weight: An input layer which is a weight for each sample.
                   Each evaluator may calculate differently to use this weight.
    :type weight: LayerOutput.
L
Liang Zhao 已提交
113 114
    :param top_k: number k in top-k error rate
    :type top_k: int
Y
yangyaming 已提交
115 116 117 118 119 120 121 122
    :param overlap_threshold: In detection tasks to filter detection results
    :type overlap_threshold: float
    :param background_id: Identifier of background class
    :type background_id: int
    :param evaluate_difficult: Whether to evaluate difficult objects
    :type evaluate_difficult: bool
    :param ap_type: How to calculate average persicion
    :type ap_type: str
Z
zhangjinchao01 已提交
123 124
    """
    # inputs type assertions.
125 126 127 128
    assert classification_threshold is None or isinstance(
        classification_threshold, float)
    assert positive_label is None or isinstance(positive_label, int)
    assert num_results is None or isinstance(num_results, int)
L
Liang Zhao 已提交
129
    assert top_k is None or isinstance(top_k, int)
Z
zhangjinchao01 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

    if not isinstance(input, list):
        input = [input]

    if label:
        input.append(label)
    if weight:
        input.append(weight)

    Evaluator(
        name=name,
        type=type,
        inputs=[i.name for i in input],
        chunk_scheme=chunk_scheme,
        num_chunk_types=num_chunk_types,
        classification_threshold=classification_threshold,
        positive_label=positive_label,
        dict_file=dict_file,
        result_file=result_file,
149
        delimited=delimited,
L
Liang Zhao 已提交
150 151
        num_results=num_results,
        top_k=top_k,
Y
yangyaming 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        excluded_chunk_types=excluded_chunk_types,
        overlap_threshold=overlap_threshold,
        background_id=background_id,
        evaluate_difficult=evaluate_difficult,
        ap_type=ap_type)


@evaluator(EvaluatorAttribute.FOR_DETECTION)
@wrap_name_default()
def detection_map_evaluator(input,
                            label,
                            overlap_threshold=0.5,
                            background_id=0,
                            evaluate_difficult=False,
                            ap_type="11point",
                            name=None):
    """
Y
yangyaming 已提交
169
    Detection mAP Evaluator. It will print mean Average Precision (mAP) for detection.
Y
yangyaming 已提交
170

Y
yangyaming 已提交
171
    The detection mAP Evaluator based on the output of detection_output layer counts
Y
yangyaming 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    the true positive and the false positive bbox and integral them to get the
    mAP.

    The simple usage is:

    .. code-block:: python

       eval =  detection_map_evaluator(input=det_output,label=lbl)

    :param input: Input layer.
    :type input: LayerOutput
    :param label: Label layer.
    :type label: LayerOutput
    :param overlap_threshold: The bbox overlap threshold of a true positive.
    :type overlap_threshold: float
    :param background_id: The background class index.
    :type background_id: int
Y
yangyaming 已提交
189
    :param evaluate_difficult: Whether evaluate a difficult ground truth.
Y
yangyaming 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    :type evaluate_difficult: bool
    """
    if not isinstance(input, list):
        input = [input]

    if label:
        input.append(label)

    evaluator_base(
        name=name,
        type="detection_map",
        input=input,
        label=label,
        overlap_threshold=overlap_threshold,
        background_id=background_id,
        evaluate_difficult=evaluate_difficult,
        ap_type=ap_type)
Z
zhangjinchao01 已提交
207

Q
qijun 已提交
208

Z
zhangjinchao01 已提交
209 210
@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
Q
qijun 已提交
211 212 213 214
def classification_error_evaluator(input,
                                   label,
                                   name=None,
                                   weight=None,
L
Liang Zhao 已提交
215
                                   top_k=None,
Q
qijun 已提交
216
                                   threshold=None):
Z
zhangjinchao01 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    """
    Classification Error Evaluator. It will print error rate for classification.

    The classification error is:

    ..  math::

        classification\\_error = \\frac{NumOfWrongPredicts}{NumOfAllSamples}

    The simple usage is:

    .. code-block:: python

       eval =  classification_error_evaluator(input=prob,label=lbl)

    :param name: Evaluator name.
    :type name: basestring
    :param input: Input Layer name. The output prediction of network.
    :type input: LayerOutput
    :param label: Label layer name.
    :type label: basestring
    :param weight: Weight Layer name. It should be a matrix with size
                  [sample_num, 1]. And will just multiply to NumOfWrongPredicts
                  and NumOfAllSamples. So, the elements of weight are all one,
                  then means not set weight. The larger weight it is, the more
                  important this sample is.
    :type weight: LayerOutput
L
Liang Zhao 已提交
244 245
    :param top_k: number k in top-k error rate
    :type top_k: int
Z
zhangjinchao01 已提交
246 247 248 249 250
    :param threshold: The classification threshold.
    :type threshold: float
    :return: None.
    """

Q
qijun 已提交
251 252 253 254 255 256
    evaluator_base(
        name=name,
        type="classification_error",
        input=input,
        label=label,
        weight=weight,
L
Liang Zhao 已提交
257
        top_k=top_k,
Q
qijun 已提交
258 259
        classification_threshold=threshold, )

Z
zhangjinchao01 已提交
260 261 262 263 264 265 266

@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
def auc_evaluator(
        input,
        label,
        name=None,
Q
qijun 已提交
267
        weight=None, ):
Z
zhangjinchao01 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    """
    Auc Evaluator which adapts to binary classification.

    The simple usage:

    .. code-block:: python

       eval = auc_evaluator(input, label)

    :param name: Evaluator name.
    :type name: None|basestring
    :param input: Input Layer name. The output prediction of network.
    :type input: LayerOutput
    :param label: Label layer name.
    :type label: None|basestring
    :param weight: Weight Layer name. It should be a matrix with size
                  [sample_num, 1].
    :type weight: LayerOutput
    """
Q
qijun 已提交
287 288 289 290 291 292 293
    evaluator_base(
        name=name,
        type="last-column-auc",
        input=input,
        label=label,
        weight=weight)

Z
zhangjinchao01 已提交
294 295 296 297 298 299

@evaluator(EvaluatorAttribute.FOR_RANK)
@wrap_name_default()
def pnpair_evaluator(
        input,
        label,
300
        query_id,
W
wanghaoshuang 已提交
301
        weight=None,
W
wanghaoshuang 已提交
302
        name=None, ):
Z
zhangjinchao01 已提交
303 304 305 306 307 308 309 310
    """
    Positive-negative pair rate Evaluator which adapts to rank task like
    learning to rank. This evaluator must contain at least three layers.

    The simple usage:

    .. code-block:: python

311
       eval = pnpair_evaluator(input, label, query_id)
Z
zhangjinchao01 已提交
312 313 314 315 316

    :param input: Input Layer name. The output prediction of network.
    :type input: LayerOutput
    :param label: Label layer name.
    :type label: LayerOutput
317 318 319 320
    :param query_id: Query_id layer name. Query_id indicates that which query
     each sample belongs to. Its shape should be
     the same as output of Label layer.
    :type query_id: LayerOutput
Z
zhangjinchao01 已提交
321
    :param weight: Weight Layer name. It should be a matrix with size
322 323 324
                  [sample_num, 1] which indicates the weight of each sample.
                  The default weight of sample is 1 if the weight layer is None.
                  And the pair weight is the mean of the two samples' weight.
Z
zhangjinchao01 已提交
325
    :type weight: LayerOutput
W
wanghaoshuang 已提交
326 327
    :param name: Evaluator name.
    :type name: None|basestring
Z
zhangjinchao01 已提交
328
    """
W
wanghaoshuang 已提交
329 330 331 332
    if not isinstance(input, list):
        input = [input]
    if label:
        input.append(label)
333 334
    if query_id:
        input.append(query_id)
Q
qijun 已提交
335 336
    evaluator_base(
        input=input,
W
wanghaoshuang 已提交
337 338 339
        type="pnpair",
        weight=weight,
        name=name, )
Q
qijun 已提交
340

Z
zhangjinchao01 已提交
341 342 343 344 345 346

@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
def precision_recall_evaluator(
        input,
        label,
347
        positive_label=None,
Z
zhangjinchao01 已提交
348
        weight=None,
Q
qijun 已提交
349
        name=None, ):
Z
zhangjinchao01 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
    """
    An Evaluator to calculate precision and recall, F1-score.
    It is adapt to the task with multiple labels.

    - If positive_label=-1, it will print the average precision, recall,
      F1-score of all labels.

    - If use specify positive_label, it will print the precision, recall,
      F1-score of this label.

    The simple usage:

    .. code-block:: python

       eval = precision_recall_evaluator(input, label)

    :param name: Evaluator name.
    :type name: None|basestring
    :param input: Input Layer name. The output prediction of network.
    :type input: LayerOutput
    :param label: Label layer name.
    :type label: LayerOutput
    :param positive_label: The input label layer.
    :type positive_label: LayerOutput.
    :param weight: Weight Layer name. It should be a matrix with size
                  [sample_num, 1]. (TODO, explaination)
    :type weight: LayerOutput
    """
Q
qijun 已提交
378 379 380 381 382 383 384 385
    evaluator_base(
        name=name,
        type="precision_recall",
        input=input,
        label=label,
        positive_label=positive_label,
        weight=weight)

Z
zhangjinchao01 已提交
386 387 388 389 390

@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
def ctc_error_evaluator(
        input,
391
        label,
Q
qijun 已提交
392
        name=None, ):
Z
zhangjinchao01 已提交
393 394 395 396 397 398 399
    """
    This evaluator is to calculate sequence-to-sequence edit distance.

    The simple usage is :

    .. code-block:: python

400
       eval = ctc_error_evaluator(input=input, label=lbl)
Z
zhangjinchao01 已提交
401 402 403

    :param name: Evaluator name.
    :type name: None|basestring
404
    :param input: Input Layer. Should be the same as the input for ctc_layer.
Z
zhangjinchao01 已提交
405
    :type input: LayerOutput
406 407
    :param label: input label, which is a data_layer. Should be the same as the
                  label for ctc_layer
408
    :type label: LayerOutput
Z
zhangjinchao01 已提交
409
    """
Q
qijun 已提交
410 411 412
    evaluator_base(
        name=name, type="ctc_edit_distance", input=input, label=label)

Z
zhangjinchao01 已提交
413 414 415 416 417

@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
def chunk_evaluator(
        input,
418 419 420
        label,
        chunk_scheme,
        num_chunk_types,
421 422
        name=None,
        excluded_chunk_types=None, ):
Z
zhangjinchao01 已提交
423 424
    """
    Chunk evaluator is used to evaluate segment labelling accuracy for a
425
    sequence. It calculates precision, recall and F1 scores for the chunk detection.
Z
zhangjinchao01 已提交
426

427
    To use chunk evaluator, several concepts need to be clarified firstly.
Z
zhangjinchao01 已提交
428

Y
yangyaming 已提交
429
    * **Chunk type** is the type of the whole chunk and a chunk consists of one or several words.  (For example in NER, ORG for organization name, PER for person name etc.)
Z
zhangjinchao01 已提交
430

Y
yangyaming 已提交
431
    * **Tag type** indicates the position of a word in a chunk. (B for begin, I for inside, E for end, S for single)
432
    We can name a label by combining tag type and chunk type. (ie. B-ORG for begining of an organization name)
Z
zhangjinchao01 已提交
433

Y
yangyaming 已提交
434
    The construction of label dictionary should obey the following rules:
Z
zhangjinchao01 已提交
435

Y
yangyaming 已提交
436
    - Use one of the listed labelling schemes. These schemes differ in ways indicating chunk boundry.
Z
zhangjinchao01 已提交
437

Y
yangyaming 已提交
438 439
    .. code-block:: text

W
wanghaoshuang 已提交
440
        Scheme    Description
Y
yangyaming 已提交
441
        plain    Use the same label for the whole chunk.
W
wanghaoshuang 已提交
442
        IOB      Two labels for chunk type X, B-X for chunk begining and I-X for chunk inside.
Y
yangyaming 已提交
443
        IOE      Two labels for chunk type X, E-X for chunk ending and I-X for chunk inside.
W
wanghaoshuang 已提交
444 445
        IOBES    Four labels for chunk type X, B-X for chunk begining, I-X for chunk inside, E-X for chunk end and S-X for single word chunk.

446 447 448 449
    To make it clear, let's illustrate by an NER example.
    Assuming that there are three named entity types including ORG, PER and LOC which are called 'chunk type' here,
    if 'IOB' scheme were used, the label set will be extended to a set including B-ORG, I-ORG, B-PER, I-PER, B-LOC, I-LOC and O,
    in which B-ORG for begining of ORG and I-ORG for inside of ORG.
450 451
    Prefixes which are called 'tag type' here are added to chunk types and there are two tag types including B and I.
    Of course, the training data should be labeled accordingly.
Z
zhangjinchao01 已提交
452

Y
yangyaming 已提交
453
    - Mapping is done correctly by the listed equations and assigning protocol.
454 455

    The following table are equations to extract tag type and chunk type from a label.
Z
zhangjinchao01 已提交
456

Y
yangyaming 已提交
457 458 459 460 461
    .. code-block:: text

        tagType = label % numTagType
        chunkType = label / numTagType
        otherChunkType = numChunkTypes
W
wanghaoshuang 已提交
462

463
    The following table shows the mapping rule between tagType and tag type in each scheme.
Z
zhangjinchao01 已提交
464

Y
yangyaming 已提交
465 466 467 468 469 470 471
    .. code-block:: text

        Scheme Begin Inside End   Single
        plain  0     -      -     -
        IOB    0     1      -     -
        IOE    -     0      1     -
        IOBES  0     1      2     3
472 473

    Continue the NER example, and the label dict should look like this to satify above equations:
474

Y
yangyaming 已提交
475
    .. code-block:: text
Z
zhangjinchao01 已提交
476

Y
yangyaming 已提交
477 478 479 480 481 482 483
        B-ORG  0
        I-ORG  1
        B-PER  2
        I-PER  3
        B-LOC  4
        I-LOC  5
        O      6
Z
zhangjinchao01 已提交
484

485
    In this example, chunkType has three values: 0 for ORG, 1 for PER, 2 for LOC, because the scheme is
W
wanghaoshuang 已提交
486
    "IOB" so tagType has two values: 0 for B and 1 for I.
487
    Here we will use I-LOC to explain the above mapping rules in detail.
Y
yangyaming 已提交
488
    For I-LOC, the label id is 5, so we can get tagType=1 and chunkType=2, which means I-LOC is a part of NER chunk LOC
489
    and the tag is I.
Z
zhangjinchao01 已提交
490 491 492 493 494

    The simple usage is:

    .. code-block:: python

495
       eval = chunk_evaluator(input, label, chunk_scheme, num_chunk_types)
Z
zhangjinchao01 已提交
496

W
wanghaoshuang 已提交
497

Z
zhangjinchao01 已提交
498 499
    :param input: The input layers.
    :type input: LayerOutput
500 501
    :param label: An input layer containing the ground truth label.
    :type label: LayerOutput
Z
zhangjinchao01 已提交
502
    :param chunk_scheme: The labelling schemes support 4 types. It is one of
503
                         "IOB", "IOE", "IOBES", "plain". It is required.
Z
zhangjinchao01 已提交
504 505
    :type chunk_scheme: basestring
    :param num_chunk_types: number of chunk types other than "other"
506 507
    :param name: The Evaluator name, it is optional.
    :type name: basename|None
508
    :param excluded_chunk_types: chunks of these types are not considered
P
Peng Li 已提交
509
    :type excluded_chunk_types: list of integer|None
Z
zhangjinchao01 已提交
510
    """
Q
qijun 已提交
511 512 513 514
    evaluator_base(
        name=name,
        type="chunk",
        input=input,
515
        label=label,
Q
qijun 已提交
516
        chunk_scheme=chunk_scheme,
517 518
        num_chunk_types=num_chunk_types,
        excluded_chunk_types=excluded_chunk_types, )
Q
qijun 已提交
519

Z
zhangjinchao01 已提交
520 521 522 523 524 525

@evaluator(EvaluatorAttribute.FOR_UTILS)
@wrap_name_default()
def sum_evaluator(
        input,
        name=None,
Q
qijun 已提交
526
        weight=None, ):
Z
zhangjinchao01 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
    """
    An Evaluator to sum the result of input.

    The simple usage:

    .. code-block:: python

       eval = sum_evaluator(input)

    :param name: Evaluator name.
    :type name: None|basestring
    :param input: Input Layer name.
    :type input: LayerOutput
    :param weight: Weight Layer name. It should be a matrix with size
                  [sample_num, 1]. (TODO, explaination)
    :type weight: LayerOutput
    """
Q
qijun 已提交
544 545
    evaluator_base(name=name, type="sum", input=input, weight=weight)

Z
zhangjinchao01 已提交
546 547 548 549 550 551

@evaluator(EvaluatorAttribute.FOR_UTILS)
@wrap_name_default()
def column_sum_evaluator(
        input,
        name=None,
Q
qijun 已提交
552
        weight=None, ):
Z
zhangjinchao01 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566
    """
    This Evaluator is used to sum the last column of input.

    The simple usage is:

    .. code-block:: python

       eval = column_sum_evaluator(input, label)

    :param name: Evaluator name.
    :type name: None|basestring
    :param input: Input Layer name.
    :type input: LayerOutput
    """
Q
qijun 已提交
567 568 569
    evaluator_base(
        name=name, type="last-column-sum", input=input, weight=weight)

Z
zhangjinchao01 已提交
570 571 572 573 574 575

"""
The following are printer Evaluators which are usually used to
print the result, like value or gradient of input layers, the
results generated in machine translation, the classification error etc.
"""
Q
qijun 已提交
576 577


Z
zhangjinchao01 已提交
578 579 580 581
@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def value_printer_evaluator(
        input,
Q
qijun 已提交
582
        name=None, ):
Z
zhangjinchao01 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
    """
    This Evaluator is used to print the values of input layers. It contains
    one or more input layers.

    The simple usage is:

    .. code-block:: python

       eval = value_printer_evaluator(input)

    :param input: One or more input layers.
    :type input: LayerOutput|list
    :param name: Evaluator name.
    :type name: None|basestring
    """
Q
qijun 已提交
598 599
    evaluator_base(name=name, type="value_printer", input=input)

Z
zhangjinchao01 已提交
600 601 602 603 604

@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def gradient_printer_evaluator(
        input,
Q
qijun 已提交
605
        name=None, ):
Z
zhangjinchao01 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
    """
    This Evaluator is used to print the gradient of input layers. It contains
    one or more input layers.

    The simple usage is:

    .. code-block:: python

       eval = gradient_printer_evaluator(input)

    :param input: One or more input layers.
    :type input: LayerOutput|list
    :param name: Evaluator name.
    :type name: None|basestring
    """
Q
qijun 已提交
621 622
    evaluator_base(name=name, type="gradient_printer", input=input)

L
Liang Zhao 已提交
623

Z
zhangjinchao01 已提交
624 625 626 627
@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def maxid_printer_evaluator(
        input,
628
        num_results=None,
Q
qijun 已提交
629
        name=None, ):
Z
zhangjinchao01 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
    """
    This Evaluator is used to print maximum top k values and their indexes
    of each row of input layers. It contains one or more input layers.
    k is specified by num_results.

    The simple usage is:

    .. code-block:: python

       eval = maxid_printer_evaluator(input)

    :param input: Input Layer name.
    :type input: LayerOutput|list
    :param num_results: This number is used to specify the top k numbers.
                        It is 1 by default.
    :type num_results: int.
    :param name: Evaluator name.
    :type name: None|basestring
    """
Q
qijun 已提交
649 650 651
    evaluator_base(
        name=name, type="max_id_printer", input=input, num_results=num_results)

Z
zhangjinchao01 已提交
652 653 654 655 656

@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def maxframe_printer_evaluator(
        input,
657
        num_results=None,
Q
qijun 已提交
658
        name=None, ):
Z
zhangjinchao01 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
    """
    This Evaluator is used to print the top k frames of each input layers.
    The input layers should contain sequences info or sequences type.
    k is specified by num_results.
    It contains one or more input layers.

    Note:
        The width of each frame is 1.

    The simple usage is:

    .. code-block:: python

       eval = maxframe_printer_evaluator(input)

    :param input: Input Layer name.
    :type input: LayerOutput|list
    :param name: Evaluator name.
    :type name: None|basestring
    """
Q
qijun 已提交
679 680 681 682 683 684
    evaluator_base(
        name=name,
        type="max_frame_printer",
        input=input,
        num_results=num_results)

Z
zhangjinchao01 已提交
685 686 687 688 689

@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def seqtext_printer_evaluator(
        input,
690
        result_file,
691
        id_input=None,
692 693
        dict_file=None,
        delimited=None,
Q
qijun 已提交
694
        name=None, ):
Z
zhangjinchao01 已提交
695 696 697 698
    """
    Sequence text printer will print text according to index matrix and a
    dictionary. There can be multiple input to this layer:

699
    1. If there is no id_input, the input must be a matrix containing
Z
zhangjinchao01 已提交
700 701
    the sequence of indices;

702
    2. If there is id_input, it should be ids, and interpreted as sample ids.
Z
zhangjinchao01 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732

    The output format will be:

    1. sequence without sub-sequence, and there is probability.

    .. code-block:: python

         id \t prob space_seperated_tokens_from_dictionary_according_to_seq

    2. sequence without sub-sequence, and there is not probability.

    .. code-block:: python

         id \t space_seperated_tokens_from_dictionary_according_to_seq

    3. sequence with sub-sequence, and there is not probability.

    .. code-block:: python

         id \t space_seperated_tokens_from_dictionary_according_to_sub_seq
         \t \t space_seperated_tokens_from_dictionary_according_to_sub_seq
         ...

    Typically SequenceTextPrinter layer takes output of maxid or RecurrentGroup
    with maxid (when generating) as an input.

    The simple usage is:

    .. code-block:: python

733 734
       eval = seqtext_printer_evaluator(input=maxid_layer,
                                        id_input=sample_id,
Z
zhangjinchao01 已提交
735 736 737 738 739
                                        dict_file=dict_file,
                                        result_file=result_file)

    :param input: Input Layer name.
    :type input: LayerOutput|list
740
    :param result_file: Path of the file to store the generated results.
Z
zhangjinchao01 已提交
741
    :type result_file: basestring
742 743 744 745 746 747 748 749 750 751
    :param id_input: Index of the input sequence, and the specified index will
                     be prited in the gereated results. This an optional
                     parameter.
    :type id_input: LayerOutput
    :param dict_file: Path of dictionary. This is an optional parameter.
                      Every line is a word in the dictionary with
                      (line number - 1) as the word index.
                      If this parameter is set to None, or to an empty string,
                      only word index are printed in the generated results.
    :type dict_file: basestring
Z
zhangjinchao01 已提交
752 753 754 755 756
    :param delimited: Whether to use space to separate output tokens.
                Default is True. No space is added if set to False.
    :type delimited: bool
    :param name: Evaluator name.
    :type name: None|basestring
757 758
    :return: The seq_text_printer that prints the generated sequence to a file.
    :rtype: evaluator
Z
zhangjinchao01 已提交
759
    """
760
    assert isinstance(result_file, basestring)
761 762 763 764 765 766
    if id_input is None:
        inputs = [input]
    else:
        inputs = [id_input, input]
        input.parents.append(id_input)

Q
qijun 已提交
767 768 769 770 771 772 773 774
    evaluator_base(
        name=name,
        type="seq_text_printer",
        input=inputs,
        dict_file=dict_file,
        result_file=result_file,
        delimited=delimited)

Z
zhangjinchao01 已提交
775 776 777 778 779 780 781

@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def classification_error_printer_evaluator(
        input,
        label,
        threshold=0.5,
Q
qijun 已提交
782
        name=None, ):
Z
zhangjinchao01 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
    """
    This Evaluator is used to print the classification error of each sample.

    The simple usage is:

    .. code-block:: python

       eval = classification_error_printer_evaluator(input)

    :param input: Input layer.
    :type input: LayerOutput
    :param label: Input label layer.
    :type label: LayerOutput
    :param name: Evaluator name.
    :type name: None|basestring
    """
Q
qijun 已提交
799 800 801 802 803 804
    evaluator_base(
        name=name,
        type="classification_error_printer",
        input=input,
        label=label,
        classification_threshold=threshold)