evaluators.py 20.5 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer.config_parser import *
from default_decorators import *

Q
qijun 已提交
18 19 20 21 22 23 24 25
__all__ = [
    "evaluator_base", "classification_error_evaluator", "auc_evaluator",
    "pnpair_evaluator", "precision_recall_evaluator", "ctc_error_evaluator",
    "chunk_evaluator", "sum_evaluator", "column_sum_evaluator",
    "value_printer_evaluator", "gradient_printer_evaluator",
    "maxid_printer_evaluator", "maxframe_printer_evaluator",
    "seqtext_printer_evaluator", "classification_error_printer_evaluator"
]
Z
zhangjinchao01 已提交
26 27 28 29 30 31 32 33 34 35


class EvaluatorAttribute(object):
    FOR_CLASSIFICATION = 1
    FOR_REGRESSION = 1 << 1
    FOR_RANK = 1 << 2
    FOR_PRINT = 1 << 3
    FOR_UTILS = 1 << 4

    KEYS = [
Q
qijun 已提交
36
        "for_classification", "for_regression", "for_rank", "for_print",
Z
zhangjinchao01 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
        "for_utils"
    ]

    @staticmethod
    def to_key(idx):
        tmp = 1
        for i in xrange(0, len(EvaluatorAttribute.KEYS)):
            if idx == tmp:
                return EvaluatorAttribute.KEYS[i]
            else:
                tmp = (tmp << 1)


def evaluator(*attrs):
    def impl(method):
        for attr in attrs:
            setattr(method, EvaluatorAttribute.to_key(attr), True)
        method.is_evaluator = True
        return method
Q
qijun 已提交
56

Z
zhangjinchao01 已提交
57 58
    return impl

Q
qijun 已提交
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73
def evaluator_base(
        input,
        type,
        label=None,
        weight=None,
        name=None,
        chunk_scheme=None,
        num_chunk_types=None,
        classification_threshold=None,
        positive_label=None,
        dict_file=None,
        result_file=None,
        num_results=None,
        delimited=None,
L
Liang Zhao 已提交
74
        top_k=None,
75
        excluded_chunk_types=None, ):
Z
zhangjinchao01 已提交
76
    """
L
luotao02 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    Evaluator will evaluate the network status while training/testing.

    User can use evaluator by classify/regression job. For example.

    ..  code-block:: python

        classify(prediction, output, evaluator=classification_error_evaluator)

    And user could define evaluator separately as follow.

    ..  code-block:: python

        classification_error_evaluator("ErrorRate", prediction, label)

    The evaluator often contains a name parameter. It will also be printed when
    evaluating network. The printed information may look like the following.

    ..  code-block:: text

         Batch=200 samples=20000 AvgCost=0.679655 CurrentCost=0.662179 Eval:
         classification_error_evaluator=0.4486
         CurrentEval: ErrorRate=0.3964
99

Z
zhangjinchao01 已提交
100 101 102 103 104 105 106 107
    :param input: Input layers, a object of LayerOutput or a list of
                  LayerOutput.
    :type input: list|LayerOutput
    :param label: An input layer containing the ground truth label.
    :type label: LayerOutput|None
    :param weight: An input layer which is a weight for each sample.
                   Each evaluator may calculate differently to use this weight.
    :type weight: LayerOutput.
L
Liang Zhao 已提交
108 109
    :param top_k: number k in top-k error rate
    :type top_k: int
Z
zhangjinchao01 已提交
110 111
    """
    # inputs type assertions.
112 113 114 115
    assert classification_threshold is None or isinstance(
        classification_threshold, float)
    assert positive_label is None or isinstance(positive_label, int)
    assert num_results is None or isinstance(num_results, int)
L
Liang Zhao 已提交
116
    assert top_k is None or isinstance(top_k, int)
Z
zhangjinchao01 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

    if not isinstance(input, list):
        input = [input]

    if label:
        input.append(label)
    if weight:
        input.append(weight)

    Evaluator(
        name=name,
        type=type,
        inputs=[i.name for i in input],
        chunk_scheme=chunk_scheme,
        num_chunk_types=num_chunk_types,
        classification_threshold=classification_threshold,
        positive_label=positive_label,
        dict_file=dict_file,
        result_file=result_file,
136
        delimited=delimited,
L
Liang Zhao 已提交
137 138
        num_results=num_results,
        top_k=top_k,
139
        excluded_chunk_types=excluded_chunk_types, )
Z
zhangjinchao01 已提交
140

Q
qijun 已提交
141

Z
zhangjinchao01 已提交
142 143
@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
Q
qijun 已提交
144 145 146 147
def classification_error_evaluator(input,
                                   label,
                                   name=None,
                                   weight=None,
L
Liang Zhao 已提交
148
                                   top_k=None,
Q
qijun 已提交
149
                                   threshold=None):
Z
zhangjinchao01 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    """
    Classification Error Evaluator. It will print error rate for classification.

    The classification error is:

    ..  math::

        classification\\_error = \\frac{NumOfWrongPredicts}{NumOfAllSamples}

    The simple usage is:

    .. code-block:: python

       eval =  classification_error_evaluator(input=prob,label=lbl)

    :param name: Evaluator name.
    :type name: basestring
    :param input: Input Layer name. The output prediction of network.
    :type input: LayerOutput
    :param label: Label layer name.
    :type label: basestring
    :param weight: Weight Layer name. It should be a matrix with size
                  [sample_num, 1]. And will just multiply to NumOfWrongPredicts
                  and NumOfAllSamples. So, the elements of weight are all one,
                  then means not set weight. The larger weight it is, the more
                  important this sample is.
    :type weight: LayerOutput
L
Liang Zhao 已提交
177 178
    :param top_k: number k in top-k error rate
    :type top_k: int
Z
zhangjinchao01 已提交
179 180 181 182 183
    :param threshold: The classification threshold.
    :type threshold: float
    :return: None.
    """

Q
qijun 已提交
184 185 186 187 188 189
    evaluator_base(
        name=name,
        type="classification_error",
        input=input,
        label=label,
        weight=weight,
L
Liang Zhao 已提交
190
        top_k=top_k,
Q
qijun 已提交
191 192
        classification_threshold=threshold, )

Z
zhangjinchao01 已提交
193 194 195 196 197 198 199

@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
def auc_evaluator(
        input,
        label,
        name=None,
Q
qijun 已提交
200
        weight=None, ):
Z
zhangjinchao01 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    """
    Auc Evaluator which adapts to binary classification.

    The simple usage:

    .. code-block:: python

       eval = auc_evaluator(input, label)

    :param name: Evaluator name.
    :type name: None|basestring
    :param input: Input Layer name. The output prediction of network.
    :type input: LayerOutput
    :param label: Label layer name.
    :type label: None|basestring
    :param weight: Weight Layer name. It should be a matrix with size
                  [sample_num, 1].
    :type weight: LayerOutput
    """
Q
qijun 已提交
220 221 222 223 224 225 226
    evaluator_base(
        name=name,
        type="last-column-auc",
        input=input,
        label=label,
        weight=weight)

Z
zhangjinchao01 已提交
227 228 229 230 231 232 233 234

@evaluator(EvaluatorAttribute.FOR_RANK)
@wrap_name_default()
def pnpair_evaluator(
        input,
        label,
        info,
        name=None,
Q
qijun 已提交
235
        weight=None, ):
Z
zhangjinchao01 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    """
    Positive-negative pair rate Evaluator which adapts to rank task like
    learning to rank. This evaluator must contain at least three layers.

    The simple usage:

    .. code-block:: python

       eval = pnpair_evaluator(input, info, label)

    :param name: Evaluator name.
    :type name: None|basestring
    :param input: Input Layer name. The output prediction of network.
    :type input: LayerOutput
    :param label: Label layer name.
    :type label: LayerOutput
    :param info: Label layer name. (TODO, explaination)
    :type info: LayerOutput
    :param weight: Weight Layer name. It should be a matrix with size
                  [sample_num, 1]. (TODO, explaination)
    :type weight: LayerOutput
    """
Q
qijun 已提交
258 259 260 261 262 263 264 265
    evaluator_base(
        name=name,
        type="pnpair",
        input=input,
        label=label,
        info=info,
        weight=weight)

Z
zhangjinchao01 已提交
266 267 268 269 270 271

@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
def precision_recall_evaluator(
        input,
        label,
272
        positive_label=None,
Z
zhangjinchao01 已提交
273
        weight=None,
Q
qijun 已提交
274
        name=None, ):
Z
zhangjinchao01 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    """
    An Evaluator to calculate precision and recall, F1-score.
    It is adapt to the task with multiple labels.

    - If positive_label=-1, it will print the average precision, recall,
      F1-score of all labels.

    - If use specify positive_label, it will print the precision, recall,
      F1-score of this label.

    The simple usage:

    .. code-block:: python

       eval = precision_recall_evaluator(input, label)

    :param name: Evaluator name.
    :type name: None|basestring
    :param input: Input Layer name. The output prediction of network.
    :type input: LayerOutput
    :param label: Label layer name.
    :type label: LayerOutput
    :param positive_label: The input label layer.
    :type positive_label: LayerOutput.
    :param weight: Weight Layer name. It should be a matrix with size
                  [sample_num, 1]. (TODO, explaination)
    :type weight: LayerOutput
    """
Q
qijun 已提交
303 304 305 306 307 308 309 310
    evaluator_base(
        name=name,
        type="precision_recall",
        input=input,
        label=label,
        positive_label=positive_label,
        weight=weight)

Z
zhangjinchao01 已提交
311 312 313 314 315

@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
def ctc_error_evaluator(
        input,
316
        label,
Q
qijun 已提交
317
        name=None, ):
Z
zhangjinchao01 已提交
318 319 320 321 322 323 324
    """
    This evaluator is to calculate sequence-to-sequence edit distance.

    The simple usage is :

    .. code-block:: python

325
       eval = ctc_error_evaluator(input=input, label=lbl)
Z
zhangjinchao01 已提交
326 327 328

    :param name: Evaluator name.
    :type name: None|basestring
329
    :param input: Input Layer. Should be the same as the input for ctc_layer.
Z
zhangjinchao01 已提交
330
    :type input: LayerOutput
331 332
    :param label: input label, which is a data_layer. Should be the same as the
                  label for ctc_layer
333
    :type label: LayerOutput
Z
zhangjinchao01 已提交
334
    """
Q
qijun 已提交
335 336 337
    evaluator_base(
        name=name, type="ctc_edit_distance", input=input, label=label)

Z
zhangjinchao01 已提交
338 339 340 341 342

@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
def chunk_evaluator(
        input,
343 344 345
        label,
        chunk_scheme,
        num_chunk_types,
346 347
        name=None,
        excluded_chunk_types=None, ):
Z
zhangjinchao01 已提交
348 349
    """
    Chunk evaluator is used to evaluate segment labelling accuracy for a
350
    sequence. It calculates precision, recall and F1 score of the chunk detection.
Z
zhangjinchao01 已提交
351

352 353
    To use chunk evaluator, the construction of label dict should obey the following rules:
    (1) Use one of the listed labelling schemes. These schemes differ in ways indicating chunk boundry.
Z
zhangjinchao01 已提交
354

355 356 357 358 359 360
    .. code-block:: python
     Scheme Begin Inside End   Single
      plain  0     -      -     -
      IOB    0     1      -     -
      IOE    -     0      1     -
      IOBES  0     1      2     3
Z
zhangjinchao01 已提交
361 362
    .. code-block:: python

363 364 365 366 367 368
    To make it clear, let's illustrate by a NER example.
    Assuming that there are two named entity types including ORG and PER which are called 'chunk type' here,
    if 'IOB' scheme were used, the label set will be extended to a set including B-ORG, I-ORG, B-PER, I-PER and O,
    in which B-ORG for begining of ORG and I-ORG for end of ORG.
    Prefixes which are called 'tag type' here are added to chunk types and there are two tag types including B and I.
    Of course, the training data should be labeled accordingly.
Z
zhangjinchao01 已提交
369

370
    (2) Map can be done correctly by the listed equations.
Z
zhangjinchao01 已提交
371

372 373 374 375
    .. code-block:: python
    tagType = label % numTagType
    chunkType = label / numTagType
    otherChunkType = numChunkTypes
Z
zhangjinchao01 已提交
376 377
    .. code-block:: python

378 379 380 381 382 383 384 385 386
    Continue the NER example, and the label dict should like this to satify above equations:

    .. code-block:: python
      B-ORG  0
      I-ORG  1
      B-PER  2
      I-PER  3
      O      4
    .. code-block:: python
Z
zhangjinchao01 已提交
387

388
    Realizing that the number of is chunk type is 2 and number of tag type is 2, it is easy to validate this.
Z
zhangjinchao01 已提交
389 390 391 392 393

    The simple usage is:

    .. code-block:: python

394
       eval = chunk_evaluator(input, label, chunk_scheme, num_chunk_types)
Z
zhangjinchao01 已提交
395 396 397

    :param input: The input layers.
    :type input: LayerOutput
398 399
    :param label: An input layer containing the ground truth label.
    :type label: LayerOutput
Z
zhangjinchao01 已提交
400
    :param chunk_scheme: The labelling schemes support 4 types. It is one of
401
                         "IOB", "IOE", "IOBES", "plain". It is required.
Z
zhangjinchao01 已提交
402 403
    :type chunk_scheme: basestring
    :param num_chunk_types: number of chunk types other than "other"
404 405
    :param name: The Evaluator name, it is optional.
    :type name: basename|None
406
    :param excluded_chunk_types: chunks of these types are not considered
P
Peng Li 已提交
407
    :type excluded_chunk_types: list of integer|None
Z
zhangjinchao01 已提交
408
    """
Q
qijun 已提交
409 410 411 412
    evaluator_base(
        name=name,
        type="chunk",
        input=input,
413
        label=label,
Q
qijun 已提交
414
        chunk_scheme=chunk_scheme,
415 416
        num_chunk_types=num_chunk_types,
        excluded_chunk_types=excluded_chunk_types, )
Q
qijun 已提交
417

Z
zhangjinchao01 已提交
418 419 420 421 422 423

@evaluator(EvaluatorAttribute.FOR_UTILS)
@wrap_name_default()
def sum_evaluator(
        input,
        name=None,
Q
qijun 已提交
424
        weight=None, ):
Z
zhangjinchao01 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
    """
    An Evaluator to sum the result of input.

    The simple usage:

    .. code-block:: python

       eval = sum_evaluator(input)

    :param name: Evaluator name.
    :type name: None|basestring
    :param input: Input Layer name.
    :type input: LayerOutput
    :param weight: Weight Layer name. It should be a matrix with size
                  [sample_num, 1]. (TODO, explaination)
    :type weight: LayerOutput
    """
Q
qijun 已提交
442 443
    evaluator_base(name=name, type="sum", input=input, weight=weight)

Z
zhangjinchao01 已提交
444 445 446 447 448 449

@evaluator(EvaluatorAttribute.FOR_UTILS)
@wrap_name_default()
def column_sum_evaluator(
        input,
        name=None,
Q
qijun 已提交
450
        weight=None, ):
Z
zhangjinchao01 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464
    """
    This Evaluator is used to sum the last column of input.

    The simple usage is:

    .. code-block:: python

       eval = column_sum_evaluator(input, label)

    :param name: Evaluator name.
    :type name: None|basestring
    :param input: Input Layer name.
    :type input: LayerOutput
    """
Q
qijun 已提交
465 466 467
    evaluator_base(
        name=name, type="last-column-sum", input=input, weight=weight)

Z
zhangjinchao01 已提交
468 469 470 471 472 473

"""
The following are printer Evaluators which are usually used to
print the result, like value or gradient of input layers, the
results generated in machine translation, the classification error etc.
"""
Q
qijun 已提交
474 475


Z
zhangjinchao01 已提交
476 477 478 479
@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def value_printer_evaluator(
        input,
Q
qijun 已提交
480
        name=None, ):
Z
zhangjinchao01 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
    """
    This Evaluator is used to print the values of input layers. It contains
    one or more input layers.

    The simple usage is:

    .. code-block:: python

       eval = value_printer_evaluator(input)

    :param input: One or more input layers.
    :type input: LayerOutput|list
    :param name: Evaluator name.
    :type name: None|basestring
    """
Q
qijun 已提交
496 497
    evaluator_base(name=name, type="value_printer", input=input)

Z
zhangjinchao01 已提交
498 499 500 501 502

@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def gradient_printer_evaluator(
        input,
Q
qijun 已提交
503
        name=None, ):
Z
zhangjinchao01 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
    """
    This Evaluator is used to print the gradient of input layers. It contains
    one or more input layers.

    The simple usage is:

    .. code-block:: python

       eval = gradient_printer_evaluator(input)

    :param input: One or more input layers.
    :type input: LayerOutput|list
    :param name: Evaluator name.
    :type name: None|basestring
    """
Q
qijun 已提交
519 520
    evaluator_base(name=name, type="gradient_printer", input=input)

L
Liang Zhao 已提交
521

Z
zhangjinchao01 已提交
522 523 524 525
@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def maxid_printer_evaluator(
        input,
526
        num_results=None,
Q
qijun 已提交
527
        name=None, ):
Z
zhangjinchao01 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
    """
    This Evaluator is used to print maximum top k values and their indexes
    of each row of input layers. It contains one or more input layers.
    k is specified by num_results.

    The simple usage is:

    .. code-block:: python

       eval = maxid_printer_evaluator(input)

    :param input: Input Layer name.
    :type input: LayerOutput|list
    :param num_results: This number is used to specify the top k numbers.
                        It is 1 by default.
    :type num_results: int.
    :param name: Evaluator name.
    :type name: None|basestring
    """
Q
qijun 已提交
547 548 549
    evaluator_base(
        name=name, type="max_id_printer", input=input, num_results=num_results)

Z
zhangjinchao01 已提交
550 551 552 553 554

@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def maxframe_printer_evaluator(
        input,
555
        num_results=None,
Q
qijun 已提交
556
        name=None, ):
Z
zhangjinchao01 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
    """
    This Evaluator is used to print the top k frames of each input layers.
    The input layers should contain sequences info or sequences type.
    k is specified by num_results.
    It contains one or more input layers.

    Note:
        The width of each frame is 1.

    The simple usage is:

    .. code-block:: python

       eval = maxframe_printer_evaluator(input)

    :param input: Input Layer name.
    :type input: LayerOutput|list
    :param name: Evaluator name.
    :type name: None|basestring
    """
Q
qijun 已提交
577 578 579 580 581 582
    evaluator_base(
        name=name,
        type="max_frame_printer",
        input=input,
        num_results=num_results)

Z
zhangjinchao01 已提交
583 584 585 586 587

@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def seqtext_printer_evaluator(
        input,
588
        result_file,
589
        id_input=None,
590 591
        dict_file=None,
        delimited=None,
Q
qijun 已提交
592
        name=None, ):
Z
zhangjinchao01 已提交
593 594 595 596
    """
    Sequence text printer will print text according to index matrix and a
    dictionary. There can be multiple input to this layer:

597
    1. If there is no id_input, the input must be a matrix containing
Z
zhangjinchao01 已提交
598 599
    the sequence of indices;

600
    2. If there is id_input, it should be ids, and interpreted as sample ids.
Z
zhangjinchao01 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630

    The output format will be:

    1. sequence without sub-sequence, and there is probability.

    .. code-block:: python

         id \t prob space_seperated_tokens_from_dictionary_according_to_seq

    2. sequence without sub-sequence, and there is not probability.

    .. code-block:: python

         id \t space_seperated_tokens_from_dictionary_according_to_seq

    3. sequence with sub-sequence, and there is not probability.

    .. code-block:: python

         id \t space_seperated_tokens_from_dictionary_according_to_sub_seq
         \t \t space_seperated_tokens_from_dictionary_according_to_sub_seq
         ...

    Typically SequenceTextPrinter layer takes output of maxid or RecurrentGroup
    with maxid (when generating) as an input.

    The simple usage is:

    .. code-block:: python

631 632
       eval = seqtext_printer_evaluator(input=maxid_layer,
                                        id_input=sample_id,
Z
zhangjinchao01 已提交
633 634 635 636 637
                                        dict_file=dict_file,
                                        result_file=result_file)

    :param input: Input Layer name.
    :type input: LayerOutput|list
638
    :param result_file: Path of the file to store the generated results.
Z
zhangjinchao01 已提交
639
    :type result_file: basestring
640 641 642 643 644 645 646 647 648 649
    :param id_input: Index of the input sequence, and the specified index will
                     be prited in the gereated results. This an optional
                     parameter.
    :type id_input: LayerOutput
    :param dict_file: Path of dictionary. This is an optional parameter.
                      Every line is a word in the dictionary with
                      (line number - 1) as the word index.
                      If this parameter is set to None, or to an empty string,
                      only word index are printed in the generated results.
    :type dict_file: basestring
Z
zhangjinchao01 已提交
650 651 652 653 654
    :param delimited: Whether to use space to separate output tokens.
                Default is True. No space is added if set to False.
    :type delimited: bool
    :param name: Evaluator name.
    :type name: None|basestring
655 656
    :return: The seq_text_printer that prints the generated sequence to a file.
    :rtype: evaluator
Z
zhangjinchao01 已提交
657
    """
658
    assert isinstance(result_file, basestring)
659 660 661 662 663 664
    if id_input is None:
        inputs = [input]
    else:
        inputs = [id_input, input]
        input.parents.append(id_input)

Q
qijun 已提交
665 666 667 668 669 670 671 672
    evaluator_base(
        name=name,
        type="seq_text_printer",
        input=inputs,
        dict_file=dict_file,
        result_file=result_file,
        delimited=delimited)

Z
zhangjinchao01 已提交
673 674 675 676 677 678 679

@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def classification_error_printer_evaluator(
        input,
        label,
        threshold=0.5,
Q
qijun 已提交
680
        name=None, ):
Z
zhangjinchao01 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
    """
    This Evaluator is used to print the classification error of each sample.

    The simple usage is:

    .. code-block:: python

       eval = classification_error_printer_evaluator(input)

    :param input: Input layer.
    :type input: LayerOutput
    :param label: Input label layer.
    :type label: LayerOutput
    :param name: Evaluator name.
    :type name: None|basestring
    """
Q
qijun 已提交
697 698 699 700 701 702
    evaluator_base(
        name=name,
        type="classification_error_printer",
        input=input,
        label=label,
        classification_threshold=threshold)