process_group_gloo.py 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import random
import numpy as np
import os
import shutil

import paddle
from paddle.fluid import core
import datetime
from datetime import timedelta
import paddle.fluid.core as core
from paddle.fluid.framework import _test_eager_guard
from paddle.fluid.dygraph.parallel import ParallelEnv


class TestProcessGroupFp32(unittest.TestCase):
33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    def setUp(self):
        paddle.seed(2022)
        random.seed(2022)
        np.random.seed(2022)
        self.config()

    def config(self):
        self.dtype = "float32"
        self.shape = (2, 10, 5)

    def test_create_process_group_gloo(self):
        with _test_eager_guard():
            nranks = ParallelEnv().nranks
            rank = ParallelEnv().local_rank
            is_master = True if rank == 0 else False
L
lilong12 已提交
49
            store = paddle.fluid.core.TCPStore("127.0.0.1", 6272, is_master,
G
gongweibao 已提交
50
                                               nranks, 30)
51 52
            place = paddle.fluid.core.CPUPlace()
            pg = paddle.fluid.core.ProcessGroupGloo(store, rank, nranks, place)
53 54 55 56 57 58 59 60 61 62 63 64 65 66

            # test allreduce sum
            # rank 0
            paddle.device.set_device('cpu')
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            sum_result = x + y
            if rank == 0:
                task = pg.allreduce(tensor_x)
                task.wait()
G
gongweibao 已提交
67
                np.testing.assert_equal(tensor_x, sum_result)
68 69 70
            else:
                task = pg.allreduce(tensor_y)
                task.wait()
G
gongweibao 已提交
71
                np.testing.assert_equal(tensor_y, sum_result)
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

            print("test allreduce sum api ok")

            # test allreduce max
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            max_result = paddle.maximum(tensor_x, tensor_y)

            if rank == 0:
                task = pg.allreduce(tensor_x, core.ReduceOp.MAX)
                task.wait()
                assert np.array_equal(tensor_x, max_result)
            else:
                task = pg.allreduce(tensor_y, core.ReduceOp.MAX)
                task.wait()
                assert np.array_equal(tensor_y, max_result)

            print("test allreduce max api ok")

            # test broadcast
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            broadcast_result = paddle.assign(tensor_x)
            if rank == 0:
                task = pg.broadcast(tensor_x, 0)
                assert np.array_equal(broadcast_result, tensor_x)
            else:
                task = pg.broadcast(tensor_y, 0)
                assert np.array_equal(broadcast_result, tensor_y)
            print("test broadcast api ok")

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
            # test barrier
            # rank 0
            if pg.rank() == 0:
                task = pg.barrier()
                task.wait()
            # rank 1
            else:
                task = pg.barrier()
                task.wait()

            print("test barrier api ok\n")

            # test allgather
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            tensor_y = paddle.to_tensor(y)
            out_shape = list(self.shape)
            out_shape[0] *= 2
            out = np.random.random(out_shape).astype(self.dtype)
            tensor_out = paddle.to_tensor(out)
            if pg.rank() == 0:
                task = pg.all_gather(tensor_x, tensor_out)
                task.wait()
                paddle.device.cuda.synchronize()
            # rank 1
            else:
                task = pg.all_gather(tensor_y, tensor_out)
                task.wait()
            out_1 = paddle.slice(tensor_out, [0], [0], [out_shape[0] // 2])
            out_2 = paddle.slice(tensor_out, [0], [out_shape[0] // 2],
                                 [out_shape[0]])
            assert np.array_equal(tensor_x, out_1)
            assert np.array_equal(tensor_y, out_2)
            print("test allgather api ok\n")

            # test Reduce
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            tensor_y = paddle.to_tensor(y)
            sum_result = tensor_x + tensor_y
            if pg.rank() == 0:
                task = pg.reduce(tensor_x, 0)
                task.wait()
            # rank 1
            else:
                task = pg.reduce(tensor_y, 0)
                task.wait()
            if pg.rank() == 0:
                assert np.array_equal(tensor_x, sum_result)
            print("test reduce sum api ok\n")

            # test Scatter
            # rank 0
            in_shape = list(self.shape)
            in_shape[0] *= 2
            x = np.random.random(in_shape).astype(self.dtype)
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            tensor_y = paddle.to_tensor(y)
            if pg.rank() == 0:
                task = pg.scatter(tensor_x, tensor_y, 0)
                task.wait()
            # rank 1
            else:
                task = pg.scatter(tensor_x, tensor_y, 0)
                task.wait()
            out1 = paddle.slice(tensor_x, [0], [0], [self.shape[0]])
            out2 = paddle.slice(tensor_x, [0], [self.shape[0]],
                                [self.shape[0] * 2])
            if pg.rank() == 0:
                assert np.array_equal(tensor_y, out1)
            else:
                assert np.array_equal(tensor_y, out2)
            print("test scatter api ok\n")

192 193 194

if __name__ == "__main__":
    unittest.main()