Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
5435459a
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5435459a
编写于
3月 04, 2022
作者:
L
lilong12
提交者:
GitHub
3月 04, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add communication api for ProcessGroupGloo (#40100)
* add pg_gloo apis
上级
03eb792d
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
327 addition
and
32 deletion
+327
-32
paddle/fluid/distributed/collective/ProcessGroupGloo.cc
paddle/fluid/distributed/collective/ProcessGroupGloo.cc
+194
-0
paddle/fluid/distributed/collective/ProcessGroupGloo.h
paddle/fluid/distributed/collective/ProcessGroupGloo.h
+14
-0
paddle/fluid/distributed/store/tcp_store.cc
paddle/fluid/distributed/store/tcp_store.cc
+40
-28
python/paddle/fluid/tests/unittests/process_group_gloo.py
python/paddle/fluid/tests/unittests/process_group_gloo.py
+79
-4
未找到文件。
paddle/fluid/distributed/collective/ProcessGroupGloo.cc
浏览文件 @
5435459a
...
...
@@ -25,6 +25,8 @@
#endif
#include <gloo/broadcast.h>
#include <gloo/reduce.h>
#include <gloo/scatter.h>
#include "paddle/fluid/distributed/collective/ProcessGroupGloo.h"
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#include "paddle/fluid/platform/enforce.h"
...
...
@@ -144,6 +146,22 @@ void set_inputs(P& opts, const std::vector<Tensor>& tensors) { // NOLINT
opts
.
setInputs
(
get_multi_data
<
T
>
(
tensors
),
tensors
[
0
].
numel
());
}
template
<
typename
T
,
typename
P
>
void
set_inputs_for_scatter
(
P
&
opts
,
// NOLINT
const
std
::
vector
<
Tensor
>&
tensors
,
// NOLINT
int
nranks
)
{
std
::
vector
<
T
*>
ret
(
nranks
);
auto
raw_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensors
[
0
].
impl
());
T
*
raw_pointer
=
reinterpret_cast
<
T
*>
(
raw_tensor
->
data
());
size_t
offset
=
0
;
for
(
int
i
=
0
;
i
<
nranks
;
i
++
)
{
ret
[
i
]
=
raw_pointer
+
offset
;
offset
+=
tensors
[
0
].
numel
()
/
nranks
;
}
opts
.
setInputs
(
ret
,
tensors
[
0
].
numel
()
/
nranks
);
}
ProcessGroupGloo
::
GlooTask
::
GlooTask
(
int
rank
,
const
std
::
vector
<
Tensor
>&
inputs
,
CommType
comm_type
)
...
...
@@ -257,6 +275,182 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::AllReduce(
return
task
;
}
class
BarrierGlooTask
:
public
ProcessGroupGloo
::
GlooTask
{
public:
BarrierGlooTask
(
int
rank
,
const
std
::
shared_ptr
<
gloo
::
Context
>&
context
)
:
ProcessGroupGloo
::
GlooTask
(
rank
,
std
::
vector
<
Tensor
>
{},
CommType
::
BARRIER
),
_context
(
context
)
{}
void
Run
()
override
{
_do_barrier
();
}
private:
std
::
shared_ptr
<
gloo
::
Context
>
_context
;
void
_do_barrier
()
{
gloo
::
BarrierOptions
opts
(
_context
);
gloo
::
barrier
(
opts
);
}
};
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupGloo
::
Barrier
(
const
BarrierOptions
&
opts
)
{
std
::
shared_ptr
<
BarrierGlooTask
>
task
;
auto
context
=
get_context
();
task
=
std
::
make_shared
<
BarrierGlooTask
>
(
rank_
,
context
);
task
->
Run
();
return
task
;
}
class
AllgatherGlooTask
:
public
ProcessGroupGloo
::
GlooTask
{
public:
AllgatherGlooTask
(
int
rank
,
const
std
::
shared_ptr
<
gloo
::
Context
>&
context
,
std
::
vector
<
Tensor
>&
inputs
,
// NOLINT
std
::
vector
<
Tensor
>&
outputs
,
// NOLINT
uint32_t
tag
)
:
ProcessGroupGloo
::
GlooTask
(
rank
,
inputs
,
CommType
::
ALLGATHER
),
_context
(
context
),
_inputs
(
inputs
),
_outputs
(
outputs
),
_tag
(
tag
)
{}
void
Run
()
override
{
_do_allgather
(
_inputs
,
_outputs
);
}
private:
std
::
shared_ptr
<
gloo
::
Context
>
_context
;
std
::
vector
<
Tensor
>
_inputs
;
std
::
vector
<
Tensor
>
_outputs
;
uint32_t
_tag
;
void
_do_allgather
(
std
::
vector
<
Tensor
>&
in
,
// NOLINT
std
::
vector
<
Tensor
>&
out
)
{
// NOLINT
const
auto
&
dtype
=
in
[
0
].
type
();
gloo
::
AllgatherOptions
opts
(
_context
);
GENERATE_FUNC
(
dtype
,
set_input
,
opts
,
in
[
0
]);
GENERATE_FUNC
(
dtype
,
set_output
,
opts
,
out
[
0
]);
opts
.
setTag
(
_tag
);
gloo
::
allgather
(
opts
);
}
};
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupGloo
::
AllGather
(
std
::
vector
<
Tensor
>&
in_tensors
,
std
::
vector
<
Tensor
>&
out_tensors
)
{
std
::
shared_ptr
<
AllgatherGlooTask
>
task
;
auto
tag
=
next_tag
();
auto
context
=
get_context
();
task
=
std
::
make_shared
<
AllgatherGlooTask
>
(
rank_
,
context
,
in_tensors
,
out_tensors
,
tag
);
task
->
Run
();
return
task
;
}
class
ReduceGlooTask
:
public
ProcessGroupGloo
::
GlooTask
{
public:
ReduceGlooTask
(
int
rank
,
const
std
::
shared_ptr
<
gloo
::
Context
>&
context
,
std
::
vector
<
Tensor
>&
in
,
ReduceOp
reduce_op
,
// NOLINT
int
dst
,
uint32_t
tag
)
:
ProcessGroupGloo
::
GlooTask
(
rank
,
in
,
CommType
::
REDUCE
),
_context
(
context
),
_inputs
(
in
),
_reduce_op
(
reduce_op
),
_dst
(
dst
),
_tag
(
tag
)
{}
void
Run
()
override
{
_do_reduce
(
_inputs
,
_dst
);
}
private:
std
::
shared_ptr
<
gloo
::
Context
>
_context
;
std
::
vector
<
Tensor
>
_inputs
;
const
ReduceOp
_reduce_op
;
int
_dst
;
uint32_t
_tag
;
gloo
::
ReduceOptions
::
Func
_get_function
(
const
experimental
::
DataType
type
,
const
ReduceOp
op
)
{
gloo
::
ReduceOptions
::
Func
fn
;
GENERATE_FUNC
(
type
,
_get_function_impl
,
fn
,
op
);
return
fn
;
}
template
<
typename
T
>
void
_get_function_impl
(
gloo
::
ReduceOptions
::
Func
&
fn
,
// NOLINT
const
ReduceOp
op
)
{
fn
=
get_function
<
T
>
(
op
);
}
void
_do_reduce
(
std
::
vector
<
Tensor
>&
tensors
,
int
dst
)
{
// NOLINT
const
auto
&
dtype
=
tensors
[
0
].
type
();
gloo
::
ReduceOptions
opts
(
_context
);
GENERATE_FUNC
(
dtype
,
set_input
,
opts
,
tensors
[
0
]);
GENERATE_FUNC
(
dtype
,
set_output
,
opts
,
tensors
[
0
]);
opts
.
setReduceFunction
(
_get_function
(
dtype
,
_reduce_op
));
opts
.
setTag
(
_tag
);
opts
.
setRoot
(
dst
);
gloo
::
reduce
(
opts
);
}
};
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupGloo
::
Reduce
(
std
::
vector
<
Tensor
>&
tensors
,
const
ReduceOptions
&
opts
)
{
std
::
shared_ptr
<
ReduceGlooTask
>
task
;
auto
tag
=
next_tag
();
auto
context
=
get_context
();
task
=
std
::
make_shared
<
ReduceGlooTask
>
(
rank_
,
context
,
tensors
,
opts
.
reduce_op
,
opts
.
root_rank
,
tag
);
task
->
Run
();
return
task
;
}
class
ScatterGlooTask
:
public
ProcessGroupGloo
::
GlooTask
{
public:
ScatterGlooTask
(
int
rank
,
const
std
::
shared_ptr
<
gloo
::
Context
>&
context
,
std
::
vector
<
Tensor
>&
inputs
,
// NOLINT
std
::
vector
<
Tensor
>&
outputs
,
// NOLINT
int
src
,
int
size
,
uint32_t
tag
)
:
ProcessGroupGloo
::
GlooTask
(
rank
,
inputs
,
CommType
::
SCATTER
),
_context
(
context
),
_inputs
(
inputs
),
_outputs
(
outputs
),
_src
(
src
),
_size
(
size
),
_tag
(
tag
)
{}
void
Run
()
override
{
_do_scatter
(
_inputs
,
_outputs
,
_src
);
}
private:
std
::
shared_ptr
<
gloo
::
Context
>
_context
;
std
::
vector
<
Tensor
>
_inputs
;
std
::
vector
<
Tensor
>
_outputs
;
int
_src
;
int
_size
;
uint32_t
_tag
;
void
_do_scatter
(
std
::
vector
<
Tensor
>&
in
,
std
::
vector
<
Tensor
>&
out
,
// NOLINT
int
src
)
{
const
auto
&
dtype
=
in
[
0
].
type
();
gloo
::
ScatterOptions
opts
(
_context
);
if
(
rank_
==
src
)
{
GENERATE_FUNC
(
dtype
,
set_inputs_for_scatter
,
opts
,
in
,
_size
);
}
GENERATE_FUNC
(
dtype
,
set_output
,
opts
,
out
[
0
]);
opts
.
setRoot
(
src
);
opts
.
setTag
(
_tag
);
gloo
::
scatter
(
opts
);
}
};
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupGloo
::
Scatter
(
std
::
vector
<
Tensor
>&
in_tensors
,
std
::
vector
<
Tensor
>&
out_tensors
,
const
ScatterOptions
&
opts
)
{
std
::
shared_ptr
<
ScatterGlooTask
>
task
;
auto
tag
=
next_tag
();
auto
context
=
get_context
();
task
=
std
::
make_shared
<
ScatterGlooTask
>
(
rank_
,
context
,
in_tensors
,
out_tensors
,
opts
.
root_rank
,
size_
,
tag
);
task
->
Run
();
return
task
;
}
std
::
shared_ptr
<::
gloo
::
transport
::
Device
>
ProcessGroupGloo
::
createDeviceForInterface
(
const
std
::
string
&
ifname
)
{
::
gloo
::
transport
::
tcp
::
attr
attr
;
...
...
paddle/fluid/distributed/collective/ProcessGroupGloo.h
浏览文件 @
5435459a
...
...
@@ -114,6 +114,20 @@ class ProcessGroupGloo : public ProcessGroup {
std
::
vector
<
Tensor
>&
inputs
,
const
AllreduceOptions
&
opts
=
AllreduceOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Barrier
(
const
BarrierOptions
&
=
BarrierOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllGather
(
std
::
vector
<
Tensor
>&
in_tensors
,
std
::
vector
<
Tensor
>&
out_tensors
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Reduce
(
std
::
vector
<
Tensor
>&
tensors
,
const
ReduceOptions
&
opts
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Scatter
(
std
::
vector
<
Tensor
>&
in_tensors
,
std
::
vector
<
Tensor
>&
out_tensors
,
const
ScatterOptions
&
)
override
;
std
::
shared_ptr
<::
gloo
::
Context
>
get_context
()
{
return
_context
;
}
uint64_t
next_tag
()
{
return
_tag
++
;
}
...
...
paddle/fluid/distributed/store/tcp_store.cc
浏览文件 @
5435459a
...
...
@@ -74,6 +74,7 @@ void MasterDaemon::_do_set(SocketType socket) {
}
void
MasterDaemon
::
_do_get
(
SocketType
socket
)
{
VLOG
(
3
)
<<
"MasterDaemon::_do_get"
;
std
::
string
key
=
tcputils
::
receive_string
(
socket
);
auto
iter
=
_store
.
find
(
key
);
PADDLE_ENFORCE_NE
(
...
...
@@ -86,13 +87,14 @@ void MasterDaemon::_do_get(SocketType socket) {
void
MasterDaemon
::
_do_stop
(
SocketType
socket
)
{
VLOG
(
3
)
<<
"MasterDaemon::_do_stop"
;
ReplyType
value
=
ReplyType
::
STOP_WAIT
;
tcputils
::
send_value
<
ReplyType
>
(
socket
,
value
);
if
(
--
_nranks
==
0
)
{
_stop
=
true
;
}
tcputils
::
send_value
<
ReplyType
>
(
socket
,
value
);
}
void
MasterDaemon
::
_do_wait
(
SocketType
socket
)
{
VLOG
(
3
)
<<
"MasterDaemon::_do_wait"
;
std
::
string
key
=
tcputils
::
receive_string
(
socket
);
auto
iter
=
_store
.
find
(
key
);
auto
reply
=
ReplyType
::
STOP_WAIT
;
...
...
@@ -134,32 +136,42 @@ void MasterDaemon::run() {
}
for
(
size_t
i
=
1
;
i
<
fds
.
size
();
i
++
)
{
if
(
fds
[
i
].
revents
==
0
)
{
continue
;
}
Command
command
=
tcputils
::
receive_value
<
Command
>
(
fds
[
i
].
fd
);
VLOG
(
3
)
<<
"TCPStore: recv command: "
<<
static_cast
<
int
>
(
command
)
<<
"."
;
switch
(
command
)
{
case
Command
::
ADD
:
_do_add
(
fds
[
i
].
fd
);
break
;
case
Command
::
GET
:
_do_get
(
fds
[
i
].
fd
);
break
;
case
Command
::
SET
:
_do_set
(
fds
[
i
].
fd
);
break
;
case
Command
::
WAIT
:
_do_wait
(
fds
[
i
].
fd
);
break
;
case
Command
::
STOP
:
_do_stop
(
fds
[
i
].
fd
);
break
;
default:
VLOG
(
0
)
<<
"Unknow command: "
<<
static_cast
<
int
>
(
command
);
exit
(
-
1
);
VLOG
(
0
)
<<
"fds.size:"
<<
fds
.
size
();
VLOG
(
0
)
<<
"fds.size-i:"
<<
i
;
VLOG
(
0
)
<<
"fds[i].revents:"
<<
fds
[
i
].
revents
;
try
{
if
(
fds
[
i
].
revents
==
0
)
{
continue
;
}
Command
command
=
tcputils
::
receive_value
<
Command
>
(
fds
[
i
].
fd
);
VLOG
(
3
)
<<
"TCPStore: recv command: "
<<
static_cast
<
int
>
(
command
)
<<
"."
;
switch
(
command
)
{
case
Command
::
ADD
:
_do_add
(
fds
[
i
].
fd
);
break
;
case
Command
::
GET
:
_do_get
(
fds
[
i
].
fd
);
break
;
case
Command
::
SET
:
_do_set
(
fds
[
i
].
fd
);
break
;
case
Command
::
WAIT
:
_do_wait
(
fds
[
i
].
fd
);
break
;
case
Command
::
STOP
:
_do_stop
(
fds
[
i
].
fd
);
break
;
default:
VLOG
(
0
)
<<
"Unknow command: "
<<
static_cast
<
int
>
(
command
);
exit
(
-
1
);
}
}
catch
(...)
{
fds
.
erase
(
fds
.
begin
()
+
i
);
_sockets
.
erase
(
_sockets
.
begin
()
+
i
-
1
);
}
}
}
...
...
@@ -281,8 +293,8 @@ void TCPStore::wait(const std::string& key) {
}
TCPStore
::~
TCPStore
()
{
_client
->
send_command_for_key
(
Command
::
STOP
,
""
);
VLOG
(
3
)
<<
"~TCPStore"
;
_client
->
send_command_for_key
(
Command
::
STOP
,
""
);
ReplyType
ret
=
_client
->
receive_value
<
ReplyType
>
();
PADDLE_ENFORCE_EQ
(
ret
,
ReplyType
::
STOP_WAIT
,
platform
::
errors
::
InvalidArgument
(
...
...
python/paddle/fluid/tests/unittests/process_group_gloo.py
浏览文件 @
5435459a
...
...
@@ -104,16 +104,91 @@ class TestProcessGroupFp32(unittest.TestCase):
broadcast_result
=
paddle
.
assign
(
tensor_x
)
if
rank
==
0
:
task
=
pg
.
broadcast
(
tensor_x
,
0
)
task
.
synchronize
()
assert
task
.
is_completed
()
assert
np
.
array_equal
(
broadcast_result
,
tensor_x
)
else
:
task
=
pg
.
broadcast
(
tensor_y
,
0
)
task
.
synchronize
()
assert
task
.
is_completed
()
assert
np
.
array_equal
(
broadcast_result
,
tensor_y
)
print
(
"test broadcast api ok"
)
# test barrier
# rank 0
if
pg
.
rank
()
==
0
:
task
=
pg
.
barrier
()
task
.
wait
()
# rank 1
else
:
task
=
pg
.
barrier
()
task
.
wait
()
print
(
"test barrier api ok
\n
"
)
# test allgather
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
tensor_y
=
paddle
.
to_tensor
(
y
)
out_shape
=
list
(
self
.
shape
)
out_shape
[
0
]
*=
2
out
=
np
.
random
.
random
(
out_shape
).
astype
(
self
.
dtype
)
tensor_out
=
paddle
.
to_tensor
(
out
)
if
pg
.
rank
()
==
0
:
task
=
pg
.
all_gather
(
tensor_x
,
tensor_out
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
# rank 1
else
:
task
=
pg
.
all_gather
(
tensor_y
,
tensor_out
)
task
.
wait
()
out_1
=
paddle
.
slice
(
tensor_out
,
[
0
],
[
0
],
[
out_shape
[
0
]
//
2
])
out_2
=
paddle
.
slice
(
tensor_out
,
[
0
],
[
out_shape
[
0
]
//
2
],
[
out_shape
[
0
]])
assert
np
.
array_equal
(
tensor_x
,
out_1
)
assert
np
.
array_equal
(
tensor_y
,
out_2
)
print
(
"test allgather api ok
\n
"
)
# test Reduce
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
tensor_y
=
paddle
.
to_tensor
(
y
)
sum_result
=
tensor_x
+
tensor_y
if
pg
.
rank
()
==
0
:
task
=
pg
.
reduce
(
tensor_x
,
0
)
task
.
wait
()
# rank 1
else
:
task
=
pg
.
reduce
(
tensor_y
,
0
)
task
.
wait
()
if
pg
.
rank
()
==
0
:
assert
np
.
array_equal
(
tensor_x
,
sum_result
)
print
(
"test reduce sum api ok
\n
"
)
# test Scatter
# rank 0
in_shape
=
list
(
self
.
shape
)
in_shape
[
0
]
*=
2
x
=
np
.
random
.
random
(
in_shape
).
astype
(
self
.
dtype
)
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
tensor_y
=
paddle
.
to_tensor
(
y
)
if
pg
.
rank
()
==
0
:
task
=
pg
.
scatter
(
tensor_x
,
tensor_y
,
0
)
task
.
wait
()
# rank 1
else
:
task
=
pg
.
scatter
(
tensor_x
,
tensor_y
,
0
)
task
.
wait
()
out1
=
paddle
.
slice
(
tensor_x
,
[
0
],
[
0
],
[
self
.
shape
[
0
]])
out2
=
paddle
.
slice
(
tensor_x
,
[
0
],
[
self
.
shape
[
0
]],
[
self
.
shape
[
0
]
*
2
])
if
pg
.
rank
()
==
0
:
assert
np
.
array_equal
(
tensor_y
,
out1
)
else
:
assert
np
.
array_equal
(
tensor_y
,
out2
)
print
(
"test scatter api ok
\n
"
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录