distributed_py.cc 32.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fcntl.h>
#ifdef _POSIX_C_SOURCE
#undef _POSIX_C_SOURCE
#endif

#ifdef _XOPEN_SOURCE
#undef _XOPEN_SOURCE
#endif

#include "paddle/fluid/distributed/collective/ProcessGroup.h"
25
#include "paddle/fluid/distributed/collective/ProcessGroupStream.h"
26
#include "paddle/fluid/distributed/collective/Types.h"
27
#include "paddle/fluid/distributed/collective/reducer.h"
28 29 30 31 32 33 34
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/pybind/distributed_py.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/all.h"

35
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
36 37 38
#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
#endif

W
wuhuachaocoding 已提交
39 40 41 42
#if defined(PADDLE_WITH_MPI)
#include "paddle/fluid/distributed/collective/ProcessGroupMPI.h"
#endif

43 44 45 46
#if defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/distributed/collective/ProcessGroupHCCL.h"
#endif

47 48 49 50
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
#include "paddle/fluid/distributed/collective/ProcessGroupCustom.h"
#endif

51 52 53 54 55
#if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \
    (defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_ASCEND_CL))
#include "paddle/fluid/distributed/collective/ProcessGroupHeter.h"
#endif

56 57 58 59 60
#if defined(PADDLE_WITH_GLOO)
#include "paddle/fluid/distributed/collective/ProcessGroupGloo.h"
#include "paddle/fluid/distributed/store/tcp_store.h"
#endif

61 62 63 64 65 66 67
namespace py = pybind11;

namespace paddle {
namespace pybind {

using Tensor = paddle::experimental::Tensor;

68 69 70 71 72
std::shared_ptr<distributed::EagerReducer> CreateEagerReducer(
    py::handle py_tensors,
    const std::vector<std::vector<size_t>> &group_indices,
    const std::vector<bool> &is_sparse_gradient,
    std::shared_ptr<distributed::ProcessGroup> process_group,
73 74
    const std::vector<size_t> &group_size_limits,
    bool find_unused_parameters) {
75
  auto params = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
76 77 78 79 80 81
  return std::make_shared<distributed::EagerReducer>(params,
                                                     group_indices,
                                                     is_sparse_gradient,
                                                     process_group,
                                                     group_size_limits,
                                                     find_unused_parameters);
82 83
}

84 85 86 87 88 89 90 91
#if defined(PADDLE_WITH_GLOO)
using ProcessGroupGloo = paddle::distributed::ProcessGroupGloo;
using GlooStore = paddle::distributed::ProcessGroupGloo::GlooStore;
using GlooOptions = paddle::distributed::ProcessGroupGloo::GlooOptions;
#endif

static std::string GLOO_SOCKET_IFNAME_ENV = "GLOO_SOCKET_IFNAME";  // NOLINT

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
void BindDistributed(py::module *m) {
  py::enum_<distributed::ReduceOp>(*m, "ReduceOp")
      .value("SUM", distributed::ReduceOp::SUM)
      .value("AVG", distributed::ReduceOp::AVG)
      .value("MAX", distributed::ReduceOp::MAX)
      .value("MIN", distributed::ReduceOp::MIN)
      .value("PRODUCT", distributed::ReduceOp::PRODUCT);

  py::class_<distributed::AllreduceOptions>(*m, "AllreduceOptions")
      .def(py::init<>())
      .def_readwrite("reduce_op", &distributed::AllreduceOptions::reduce_op);

  py::class_<distributed::BroadcastOptions>(*m, "BroadcastOptions")
      .def(py::init<>())
      .def_readwrite("source_rank", &distributed::BroadcastOptions::source_rank)
      .def_readwrite("source_root",
                     &distributed::BroadcastOptions::source_root);

B
Baibaifan 已提交
110 111 112 113
  py::class_<distributed::BarrierOptions>(*m, "BarrierOptions")
      .def(py::init<>())
      .def_readwrite("place_ids", &distributed::BarrierOptions::place_ids);

114 115 116 117 118
  py::class_<distributed::ReduceOptions>(*m, "ReduceOptions")
      .def(py::init<>())
      .def_readwrite("reduce_op", &distributed::ReduceOptions::reduce_op)
      .def_readwrite("source_root", &distributed::ReduceOptions::root_rank);

119 120 121 122 123 124
  auto ProcessGroup =
      py::class_<distributed::ProcessGroup,
                 std::shared_ptr<distributed::ProcessGroup>>(*m, "ProcessGroup")
          .def("rank", &distributed::ProcessGroup::GetRank)
          .def("size", &distributed::ProcessGroup::GetSize)
          .def("name", &distributed::ProcessGroup::GetBackendName)
125 126
          .def(
              "allreduce",
127 128
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
129 130 131 132 133 134 135 136 137
                 distributed::ReduceOp op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                distributed::AllreduceOptions opts;
                opts.reduce_op = op;
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.AllReduce(tensors, tensors, opts);
              },
138 139
              py::arg("tensor"),
              py::arg("op") = distributed::ReduceOp::SUM,
140 141
              py::call_guard<py::gil_scoped_release>())

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
          .def(
              "allreduce",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 distributed::ReduceOp op,
                 bool sync_op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                distributed::AllreduceOptions opts;
                opts.reduce_op = op;
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.AllReduce(tensors, tensors, opts, sync_op);
              },
              py::arg("tensor"),
              py::arg("op"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

161 162
          .def(
              "broadcast",
163 164
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
165 166 167 168 169 170 171 172 173
                 int source_rank) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                distributed::BroadcastOptions opts;
                opts.source_rank = source_rank;
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Broadcast(tensors, tensors, opts);
              },
174 175
              py::arg("tensor"),
              py::arg("source_rank"),
176 177 178 179 180 181 182 183 184 185 186 187 188 189
              py::call_guard<py::gil_scoped_release>())

          .def(
              "barrier",
              [](distributed::ProcessGroup &self, std::vector<int> place_ids) {
                distributed::BarrierOptions opts;
                opts.place_ids = place_ids;
                return self.Barrier(opts);
              },
              py::arg("place_ids") = std::vector<int>{},
              py::call_guard<py::gil_scoped_release>())

          .def(
              "send",
190 191
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
192 193 194 195 196 197 198
                 int dst) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Send(tensors, dst);
              },
199 200
              py::arg("tensor"),
              py::arg("dst"),
201 202
              py::call_guard<py::gil_scoped_release>())

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
          .def(
              "send",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int dst,
                 bool sync_op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Send(tensors, dst, sync_op);
              },
              py::arg("tensor"),
              py::arg("dst"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
          .def(
              "send_partial",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int dst_rank,
                 int nranks,
                 int rank_id) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                int numel = (*dense).numel();
                int send_numel = numel / nranks;
                int offset = send_numel * rank_id;
                return self.Send_Partial(*dense, dst_rank, offset, send_numel);
              },
              py::arg("tensor"),
              py::arg("dst"),
              py::arg("num"),
              py::arg("id"),
              py::call_guard<py::gil_scoped_release>())

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
          .def(
              "send_partial",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int dst_rank,
                 int nranks,
                 int rank_id,
                 bool sync_op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                int numel = (*dense).numel();
                int send_numel = numel / nranks;
                int offset = send_numel * rank_id;
                return self.Send_Partial(
                    *dense, dst_rank, offset, send_numel, sync_op);
              },
              py::arg("tensor"),
              py::arg("dst"),
              py::arg("num"),
              py::arg("id"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

265 266
          .def(
              "recv",
267 268
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
269 270 271 272 273 274 275
                 int src) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Recv(tensors, src);
              },
276 277
              py::arg("tensor"),
              py::arg("src"),
278 279
              py::call_guard<py::gil_scoped_release>())

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
          .def(
              "recv",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int src,
                 bool sync_op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Recv(tensors, src, sync_op);
              },
              py::arg("tensor"),
              py::arg("src"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
          .def(
              "recv_partial",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int src_rank,
                 int nranks,
                 int rank_id) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                int numel = (*dense).numel();
                int recv_numel = numel / nranks;
                int offset = recv_numel * rank_id;
                return self.Recv_Partial(*dense, src_rank, offset, recv_numel);
              },
              py::arg("tensor"),
              py::arg("src"),
              py::arg("num"),
              py::arg("id"),
              py::call_guard<py::gil_scoped_release>())

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
          .def(
              "recv_partial",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int src_rank,
                 int nranks,
                 int rank_id,
                 bool sync_op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                int numel = (*dense).numel();
                int recv_numel = numel / nranks;
                int offset = recv_numel * rank_id;
                return self.Recv_Partial(
                    *dense, src_rank, offset, recv_numel, sync_op);
              },
              py::arg("tensor"),
              py::arg("src"),
              py::arg("num"),
              py::arg("id"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

342 343
          .def(
              "all_gather",
344 345
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
346 347 348 349 350 351 352 353 354 355 356
                 py::handle py_out_tensor) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.AllGather(in_tensors, out_tensors);
              },
357 358
              py::arg("in"),
              py::arg("out"),
359 360
              py::call_guard<py::gil_scoped_release>())

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
          .def(
              "all_gather_partial",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 int nranks,
                 int rank_id) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                int numel = (*in_dense).numel();
                int send_numel = numel / nranks;
                int offset = send_numel * rank_id;
                return self.AllGather_Partial(
                    in_tensors, out_tensors, offset, send_numel);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("num"),
              py::arg("id"),
              py::call_guard<py::gil_scoped_release>())

388 389
          .def(
              "alltoall",
390 391
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
392 393 394 395 396 397 398 399 400 401 402
                 py::handle py_out_tensor) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.AllToAll(in_tensors, out_tensors);
              },
403 404
              py::arg("in"),
              py::arg("out"),
405 406
              py::call_guard<py::gil_scoped_release>())

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
          .def(
              "alltoall_single",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 std::vector<int64_t> in_sizes,
                 std::vector<int64_t> out_sizes) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.AllToAll_Single(
                    in_tensors, out_tensors, in_sizes, out_sizes);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("in_sizes"),
              py::arg("out_sizes"),
              py::call_guard<py::gil_scoped_release>())

431 432
          .def(
              "reduce",
433 434 435 436
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 int dst,
                 distributed::ReduceOp op) {
437 438 439 440 441 442 443 444 445
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                distributed::ReduceOptions opts;
                opts.reduce_op = op;
                opts.root_rank = dst;
                auto dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Reduce(tensors, tensors, opts);
              },
446 447
              py::arg("tensor"),
              py::arg("dst"),
448 449 450 451
              py::arg("op") = distributed::ReduceOp::SUM,
              py::call_guard<py::gil_scoped_release>())
          .def(
              "scatter",
452 453 454 455
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 int src) {
456 457 458 459 460 461 462 463 464 465 466 467
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                distributed::ScatterOptions opts;
                opts.root_rank = src;
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.Scatter(in_tensors, out_tensors, opts);
              },
468 469 470
              py::arg("in"),
              py::arg("out"),
              py::arg("src"),
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
              py::call_guard<py::gil_scoped_release>())
          .def(
              "_reduce_scatter_base",
              [](distributed::ProcessGroup &self,
                 py::handle py_out_tensor,
                 py::handle py_in_tensor,
                 distributed::ReduceOp op) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                distributed::ReduceScatterOptions opts;
                opts.reduce_op = op;
                auto dense_out = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                auto dense_in = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                return self._ReduceScatterBase(*dense_out, *dense_in, opts);
              },
              py::arg("out_tensor"),
              py::arg("in_tensor"),
              py::arg("op") = distributed::ReduceOp::SUM,
491
              py::call_guard<py::gil_scoped_release>());
492

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
  auto ProcessGroupStream =
      py::class_<distributed::ProcessGroupStream,
                 std::shared_ptr<distributed::ProcessGroupStream>>(
          *m, "ProcessGroupStream", ProcessGroup)
          .def(
              "allreduce_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_tensor,
                 distributed::ReduceOp op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                distributed::AllreduceOptions opts;
                opts.reduce_op = op;
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.AllReduce(tensors,
                                      tensors,
                                      opts,
                                      /*sync_op*/ true,
                                      /*use_calc_stream*/ true);
              },
              py::arg("tensor"),
              py::arg("op"),
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
              py::call_guard<py::gil_scoped_release>())

          .def(
              "send_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_tensor,
                 int dst) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Send(tensors,
                                 dst,
                                 /*sync_op*/ true,
                                 /*use_calc_stream*/ true);
              },
              py::arg("tensor"),
              py::arg("dst"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "send_partial_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_tensor,
                 int dst_rank,
                 int nranks,
                 int rank_id) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                int numel = (*dense).numel();
                int send_numel = numel / nranks;
                int offset = send_numel * rank_id;
                return self.Send_Partial(*dense,
                                         dst_rank,
                                         offset,
                                         send_numel,
                                         /*sync_op*/ true,
                                         /*use_calc_stream*/ true);
              },
              py::arg("tensor"),
              py::arg("dst"),
              py::arg("num"),
              py::arg("id"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "recv_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_tensor,
                 int src) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Recv(tensors,
                                 src,
                                 /*sync_op*/ true,
                                 /*use_calc_stream*/ true);
              },
              py::arg("tensor"),
              py::arg("src"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "recv_partial_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_tensor,
                 int src_rank,
                 int nranks,
                 int rank_id) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                int numel = (*dense).numel();
                int recv_numel = numel / nranks;
                int offset = recv_numel * rank_id;
                return self.Recv_Partial(*dense,
                                         src_rank,
                                         offset,
                                         recv_numel,
                                         /*sync_op*/ true,
                                         /*use_calc_stream*/ true);
              },
              py::arg("tensor"),
              py::arg("src"),
              py::arg("num"),
              py::arg("id"),
604 605
              py::call_guard<py::gil_scoped_release>());

606
#if defined(PADDLE_WITH_RCCL) || defined(PADDLE_WITH_NCCL)
607 608 609
  auto processGroupNCCL =
      py::class_<distributed::ProcessGroupNCCL,
                 std::shared_ptr<distributed::ProcessGroupNCCL>>(
610
          *m, "ProcessGroupNCCL", ProcessGroupStream)
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
          .def(py::init<const std::shared_ptr<distributed::Store> &,
                        int,
                        int,
                        const platform::CUDAPlace &,
                        int>(),
               py::arg("store"),
               py::arg("rank"),
               py::arg("world_size"),
               py::arg("place"),
               py::arg("group_id") = 0,
               py::call_guard<py::gil_scoped_release>());

  processGroupNCCL.def_static(
      "group_start", []() { distributed::ProcessGroupNCCL::GroupStart(); });
  processGroupNCCL.def_static(
      "group_end", []() { distributed::ProcessGroupNCCL::GroupEnd(); });

628
#endif
629

W
wuhuachaocoding 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
#if defined(PADDLE_WITH_MPI)
  py::class_<distributed::ProcessGroupMPI,
             std::shared_ptr<distributed::ProcessGroupMPI>>(
      *m, "ProcessGroupMPI", ProcessGroup)
      .def_static(
          "create",
          [](const std::vector<int> &ranks,
             int gid) -> std::shared_ptr<distributed::ProcessGroupMPI> {
            return paddle::distributed::ProcessGroupMPI::CreateProcessGroupMPI(
                ranks, gid);
          })
      .def("get_rank",
           &distributed::ProcessGroup::GetRank,
           py::call_guard<py::gil_scoped_release>())
      .def("get_world_size",
           &distributed::ProcessGroup::GetSize,
           py::call_guard<py::gil_scoped_release>());
#endif

649 650 651 652 653
#if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \
    (defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_ASCEND_CL))
  py::class_<distributed::ProcessGroupHeter,
             std::shared_ptr<distributed::ProcessGroupHeter>>(
      *m, "ProcessGroupHeter", ProcessGroup)
654 655 656
      .def(py::init<const std::shared_ptr<distributed::Store> &,
                    int,
                    int,
657 658 659 660 661
#if defined(PADDLE_WITH_ASCEND_CL)
                    const platform::NPUPlace &,
#else
                    const platform::CUDAPlace &,
#endif
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
                    int,
                    int,
                    int,
                    int,
                    int,
                    bool,
                    std::string,
                    int,
                    int>(),
           py::arg("store"),
           py::arg("rank"),
           py::arg("world_size"),
           py::arg("place"),
           py::arg("gid") = 0,
           py::arg("local_rank") = 0,
           py::arg("local_size") = 1,
           py::arg("gloo_rank") = 0,
           py::arg("gloo_size") = 1,
           py::arg("with_switch") = false,
           py::arg("switch_endpoint") = "",
           py::arg("src_rank") = "",
           py::arg("dst_rank") = "",
           py::call_guard<py::gil_scoped_release>());
685
#endif
686

687 688 689 690
#if defined(PADDLE_WITH_ASCEND_CL)
  py::class_<distributed::ProcessGroupHCCL,
             std::shared_ptr<distributed::ProcessGroupHCCL>>(
      *m, "ProcessGroupHCCL", ProcessGroup)
691 692 693 694 695 696 697 698 699 700
      .def(py::init<const std::shared_ptr<distributed::Store> &,
                    int,
                    int,
                    const platform::NPUPlace &,
                    int>(),
           py::arg("store"),
           py::arg("rank"),
           py::arg("world_size"),
           py::arg("place"),
           py::arg("group_id") = 0,
701
           py::call_guard<py::gil_scoped_release>());
702

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
#endif

#if defined(PADDLE_WITH_CUSTOM_DEVICE)
  py::class_<distributed::ProcessGroupCustom,
             std::shared_ptr<distributed::ProcessGroupCustom>>(
      *m, "ProcessGroupCustom", ProcessGroup)
      .def(py::init<const std::shared_ptr<distributed::Store> &,
                    int,
                    int,
                    const platform::CustomPlace &,
                    int>(),
           py::arg("store"),
           py::arg("rank"),
           py::arg("world_size"),
           py::arg("place"),
           py::arg("group_id") = 0,
           py::call_guard<py::gil_scoped_release>());

721 722
#endif

723 724 725
  py::class_<distributed::ProcessGroup::Task,
             std::shared_ptr<distributed::ProcessGroup::Task>>(*m, "task")
      .def("is_completed", &distributed::ProcessGroup::Task::IsCompleted)
726
      .def("is_sync", &distributed::ProcessGroup::Task::IsSync)
727 728
      .def("wait",
           &distributed::ProcessGroup::Task::Wait,
729 730
           py::arg("timeout") = kWaitTimeout,
           py::call_guard<py::gil_scoped_release>())
731 732
      .def("synchronize",
           &distributed::ProcessGroup::Task::Synchronize,
733 734
           py::call_guard<py::gil_scoped_release>());

735 736 737
#if defined(PADDLE_WITH_GLOO)
  py::class_<ProcessGroupGloo, std::shared_ptr<ProcessGroupGloo>>(
      *m, "ProcessGroupGloo", ProcessGroup)
738 739 740 741 742
      .def(py::init<const std::shared_ptr<paddle::distributed::Store> &,
                    int,
                    int,
                    const platform::CPUPlace &,
                    int,
743
                    std::shared_ptr<GlooOptions> &>(),
744
           py::call_guard<py::gil_scoped_release>())
745
      .def(py::init([](const std::shared_ptr<paddle::distributed::Store> &store,
746 747 748 749
                       int rank,
                       int world_size,
                       const platform::CPUPlace &place,
                       int gid) {
750 751 752 753 754 755 756 757
             auto opts = GlooOptions::create();
             char *ifname = getenv(GLOO_SOCKET_IFNAME_ENV.c_str());
             if (ifname && strlen(ifname) > 1) {
               opts->device = ProcessGroupGloo::createDeviceForInterface(
                   std::string(ifname));
             } else {
               opts->device = ProcessGroupGloo::createDefaultDevice();
             }
758 759
             return std::make_shared<ProcessGroupGloo>(
                 store, rank, world_size, place, gid, opts);
760
           }),
761 762 763 764 765
           py::arg("store"),
           py::arg("rank"),
           py::arg("world_size"),
           py::arg("place"),
           py::arg("group_id") = 0,
766
           py::call_guard<py::gil_scoped_release>())
767 768 769 770
      .def_static("create_default_device",
                  &ProcessGroupGloo::createDefaultDevice);
#endif

771 772
  m->def(
      "eager_assign_group_by_size",
773 774
      [](py::handle py_tensors,
         std::vector<bool> is_sparse_gradient,
775 776 777 778 779 780
         std::vector<size_t> group_size_limits,
         std::vector<int64_t> tensor_indices) {
        auto tensors = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
        return distributed::Eager_AssignGroupBySize(
            tensors, is_sparse_gradient, group_size_limits, tensor_indices);
      },
781 782
      py::arg("tensors"),
      py::arg("is_sparse_gradient"),
783 784 785
      py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
      py::arg("tensor_indices") = std::vector<int64_t>{},
      py::call_guard<py::gil_scoped_release>());
786 787

  py::class_<distributed::EagerReducer,
788 789
             std::shared_ptr<distributed::EagerReducer>>(
      *m, "EagerReducer", R"DOC()DOC")
790
      .def(py::init(&CreateEagerReducer))
791 792 793 794 795 796
      .def(
          "prepare_for_backward",
          [](distributed::EagerReducer &self, py::handle py_tensors) {
            auto params = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
            self.PrepareForBackward(params);
          },
797 798
          py::arg("tensors"),
          py::call_guard<py::gil_scoped_release>());
799 800 801 802
}

}  // end namespace pybind
}  // namespace paddle