one_hot_v2_op_npu.cc 2.9 KB
Newer Older
R
ronnywang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/one_hot_v2_op.h"

17
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
R
ronnywang 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

namespace paddle {
namespace operators {
using Tensor = framework::Tensor;

template <typename T>
class OneHotV2NPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::NPUDeviceContext>();
    auto* in = ctx.Input<LoDTensor>("X");
    auto* out = ctx.Output<LoDTensor>("Out");
    int depth = ctx.Attr<int>("depth");

    if (ctx.HasInput("depth_tensor")) {
      auto* depth_tensor = ctx.Input<Tensor>("depth_tensor");
      std::vector<int32_t> depth_data;
      framework::TensorToVector(*depth_tensor, dev_ctx, &depth_data);
      depth = depth_data[0];
      auto out_dims = out->dims();
      out_dims[out_dims.size() - 1] = depth;
      out->Resize(out_dims);
    }
    out->mutable_data<float>(ctx.GetPlace());

    float on_value = 1.0f, off_value = 0.0f;
    if (in->type() == framework::proto::VarType::INT32) {
      NpuOpRunner runner;
      runner.SetType("OneHot")
          .AddInput(*in)
          .AddInput(std::vector<int32_t>({static_cast<int32_t>(depth)}))
          .AddInput(std::vector<float>({on_value}))
          .AddInput(std::vector<float>({off_value}))
          .AddAttr("axis", -1)
          .AddOutput(*out);
      runner.Run(dev_ctx.stream());
    } else {
      Tensor transformed_in;
      transformed_in.mutable_data<int32_t>(in->dims(), dev_ctx.GetPlace());
      const auto& cast_runner = NpuOpRunner("Cast", {*in}, {transformed_in},
                                            {{"dst_type", ACL_INT32}});
      cast_runner.Run(dev_ctx.stream());
      NpuOpRunner runner;
      runner.SetType("OneHot")
          .AddInput(transformed_in)
          .AddInput(std::vector<int32_t>({static_cast<int32_t>(depth)}))
          .AddInput(std::vector<float>({on_value}))
          .AddInput(std::vector<float>({off_value}))
          .AddAttr("axis", -1)
          .AddOutput(*out);
      runner.Run(dev_ctx.stream());
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_NPU_KERNEL(one_hot_v2, ops::OneHotV2NPUKernel<int32_t>,
                       ops::OneHotV2NPUKernel<int64_t>);