未验证 提交 d710c3a0 编写于 作者: R ronnywang 提交者: GitHub

[NPU] add npu_one_hot_v2 (#34937)

上级 751a7942
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/one_hot_v2_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class OneHotV2NPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto& dev_ctx =
ctx.template device_context<paddle::platform::NPUDeviceContext>();
auto* in = ctx.Input<LoDTensor>("X");
auto* out = ctx.Output<LoDTensor>("Out");
int depth = ctx.Attr<int>("depth");
if (ctx.HasInput("depth_tensor")) {
auto* depth_tensor = ctx.Input<Tensor>("depth_tensor");
std::vector<int32_t> depth_data;
framework::TensorToVector(*depth_tensor, dev_ctx, &depth_data);
depth = depth_data[0];
auto out_dims = out->dims();
out_dims[out_dims.size() - 1] = depth;
out->Resize(out_dims);
}
out->mutable_data<float>(ctx.GetPlace());
float on_value = 1.0f, off_value = 0.0f;
if (in->type() == framework::proto::VarType::INT32) {
NpuOpRunner runner;
runner.SetType("OneHot")
.AddInput(*in)
.AddInput(std::vector<int32_t>({static_cast<int32_t>(depth)}))
.AddInput(std::vector<float>({on_value}))
.AddInput(std::vector<float>({off_value}))
.AddAttr("axis", -1)
.AddOutput(*out);
runner.Run(dev_ctx.stream());
} else {
Tensor transformed_in;
transformed_in.mutable_data<int32_t>(in->dims(), dev_ctx.GetPlace());
const auto& cast_runner = NpuOpRunner("Cast", {*in}, {transformed_in},
{{"dst_type", ACL_INT32}});
cast_runner.Run(dev_ctx.stream());
NpuOpRunner runner;
runner.SetType("OneHot")
.AddInput(transformed_in)
.AddInput(std::vector<int32_t>({static_cast<int32_t>(depth)}))
.AddInput(std::vector<float>({on_value}))
.AddInput(std::vector<float>({off_value}))
.AddAttr("axis", -1)
.AddOutput(*out);
runner.Run(dev_ctx.stream());
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_NPU_KERNEL(one_hot_v2, ops::OneHotV2NPUKernel<int32_t>,
ops::OneHotV2NPUKernel<int64_t>);
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import sys
import unittest
import numpy as np
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.framework import Program, program_guard
paddle.enable_static()
class TestOneHotOp(OpTest):
def set_npu(self):
self.__class__.use_npu = True
def setUp(self):
self.set_npu()
self.op_type = 'one_hot_v2'
depth = 10
depth_np = np.array(10).astype('int32')
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0])])
out = np.zeros(shape=(np.product(x.shape), depth)).astype('float32')
for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0
self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32)}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
self.check_output_with_place(paddle.NPUPlace(0), check_dygraph=False)
class TestOneHotOp_non_lod(OpTest):
def setUp(self):
self.op_type = 'one_hot_v2'
depth = 10
depth_np = np.array(10).astype('int32')
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0])])
out = np.zeros(shape=(np.product(x.shape), depth)).astype('float32')
for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0
self.inputs = {'X': x, 'depth_tensor': depth_np}
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32)}
self.outputs = {'Out': out}
def test_check_output(self):
self.check_output()
class TestOneHotOp_attr(OpTest):
def set_npu(self):
self.__class__.use_npu = True
def setUp(self):
self.set_npu()
self.op_type = 'one_hot_v2'
depth = 10
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]), 1,
depth)).astype('float32')
for i in range(np.product(x.shape)):
out[i, 0, x[i]] = 1.0
self.inputs = {'X': (x, x_lod)}
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32), 'depth': depth}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
self.check_output_with_place(paddle.NPUPlace(0), check_dygraph=False)
class TestOneHotOp_default_dtype(OpTest):
def set_npu(self):
self.__class__.use_npu = True
def setUp(self):
self.set_npu()
self.op_type = 'one_hot_v2'
depth = 10
depth_np = np.array(10).astype('int32')
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0])])
out = np.zeros(shape=(np.product(x.shape), depth)).astype('float32')
for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0
self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
self.attrs = {}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
self.check_output_with_place(paddle.NPUPlace(0), check_dygraph=False)
class TestOneHotOp_default_dtype_attr(OpTest):
def set_npu(self):
self.__class__.use_npu = True
def setUp(self):
self.set_npu()
self.op_type = 'one_hot_v2'
depth = 10
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]), 1,
depth)).astype('float32')
for i in range(np.product(x.shape)):
out[i, 0, x[i]] = 1.0
self.inputs = {'X': (x, x_lod)}
self.attrs = {'depth': depth}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
self.check_output_with_place(paddle.NPUPlace(0), check_dygraph=False)
class TestOneHotOp_out_of_range(OpTest):
def set_npu(self):
self.__class__.use_npu = True
def setUp(self):
self.set_npu()
self.op_type = 'one_hot_v2'
depth = 10
x_lod = [[4, 1, 3, 3]]
x = [np.random.choice([-1, depth]) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0])])
out = np.zeros(shape=(np.product(x.shape), depth)).astype('float32')
self.inputs = {'X': (x, x_lod)}
self.attrs = {'depth': depth, 'allow_out_of_range': True}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
self.check_output_with_place(paddle.NPUPlace(0), check_dygraph=False)
class TestOneHotOp_dtype_int64(OpTest):
def set_npu(self):
self.__class__.use_npu = True
def setUp(self):
self.set_npu()
self.op_type = 'one_hot_v2'
depth = 10
x_lod = [[4, 1, 3, 3]]
x = [np.random.choice([-1, depth]) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int64').reshape([sum(x_lod[0])])
out = np.zeros(shape=(np.product(x.shape), depth)).astype('float32')
self.inputs = {'X': (x, x_lod)}
self.attrs = {'depth': depth, 'allow_out_of_range': True}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
self.check_output_with_place(paddle.NPUPlace(0), check_dygraph=False)
class TestOneHotOpApi(unittest.TestCase):
def test_api(self):
depth = 10
self._run(depth)
def test_api_with_depthTensor(self):
depth = fluid.layers.assign(input=np.array([10], dtype=np.int32))
self._run(depth)
def test_api_with_dygraph(self):
depth = 10
label = np.array([np.random.randint(0, depth - 1)
for i in range(6)]).reshape([6, 1])
with fluid.dygraph.guard(paddle.NPUPlace(0)):
one_hot_label = fluid.one_hot(
input=fluid.dygraph.to_variable(label), depth=depth)
def _run(self, depth):
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
one_hot_label = fluid.one_hot(input=label, depth=depth)
place = fluid.NPUPlace(0)
label_data = np.array([np.random.randint(0, 10 - 1)
for i in range(6)]).reshape([6, 1])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
ret = exe.run(feed={'label': label_data, },
fetch_list=[one_hot_label],
return_numpy=False)
if __name__ == '__main__':
paddle.enable_static()
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册