pool_with_index_op.cc 12.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_with_index_op.h"
C
chengduoZH 已提交
16 17 18 19

namespace paddle {
namespace operators {

Y
Yang Yang 已提交
20
inline int MaxPoolOutputSize(int input_size, int filter_size, int padding,
C
chengduoZH 已提交
21
                             int stride) {
C
chengduoZH 已提交
22 23 24 25 26 27 28 29
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
30
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduoZH 已提交
31
    PADDLE_ENFORCE(ctx->HasInput("X"),
C
chengduoZH 已提交
32
                   "Input(X) of Pooling should not be null.");
C
chengduoZH 已提交
33
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
C
chengduoZH 已提交
34
                   "Output(Out) of Pooling should not be null.");
C
chengduoZH 已提交
35
    PADDLE_ENFORCE(ctx->HasOutput("Mask"),
C
chengduoZH 已提交
36
                   "Output(Mask) of Pooling should not be null.");
C
chengduoZH 已提交
37 38 39 40 41 42 43 44

    auto in_x_dims = ctx->GetInputDim("X");

    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

    PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
45
                   "Pooling intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
46

C
chengduoZH 已提交
47
    if (ctx->Attrs().Get<bool>("global_pooling")) {
C
chengduoZH 已提交
48
      ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
49 50
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
C
chengduoZH 已提交
51
        ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
52
      }
C
chengduoZH 已提交
53 54 55
    }

    PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
C
fix doc  
chengduoZH 已提交
56
                   "Input size and pooling size should be consistent.");
C
chengduoZH 已提交
57
    PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
C
chengduoZH 已提交
58
                      "Strides size and pooling size should be the same.");
C
chengduoZH 已提交
59
    PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
C
chengduoZH 已提交
60
                      "Paddings size and pooling size should be the same.");
C
chengduoZH 已提交
61 62 63

    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
    for (size_t i = 0; i < ksize.size(); ++i) {
Y
Yang Yang 已提交
64
      output_shape.push_back(MaxPoolOutputSize(in_x_dims[i + 2], ksize[i],
C
chengduoZH 已提交
65 66 67 68 69
                                               paddings[i], strides[i]));
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
    ctx->SetOutputDim("Mask", framework::make_ddim(output_shape));
  }
C
chengduoZH 已提交
70 71

 protected:
72
  framework::OpKernelType GetExpectedKernelType(
C
chengduoZH 已提交
73
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
74 75
    return framework::OpKernelType(ctx.Input<framework::Tensor>("X")->type(),
                                   ctx.device_context());
C
chengduoZH 已提交
76
  }
C
chengduoZH 已提交
77 78 79 80 81 82
};

class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
83
  void InferShape(framework::InferShapeContext *ctx) const override {
84
    PADDLE_ENFORCE(ctx->HasInput("Mask"), "Input(Mask) must not be null.");
C
chengduoZH 已提交
85
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
C
chengduoZH 已提交
86 87
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Input(X@GRAD) should not be null.");
C
chengduoZH 已提交
88 89
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
C
chengduoZH 已提交
90 91

 protected:
92
  framework::OpKernelType GetExpectedKernelType(
C
chengduoZH 已提交
93
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
94 95
    return framework::OpKernelType(ctx.Input<framework::Tensor>("X")->type(),
                                   ctx.device_context());
C
chengduoZH 已提交
96
  }
C
chengduoZH 已提交
97 98 99 100
};

class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
101
  void Make() override {
C
chengduoZH 已提交
102 103
    AddInput(
        "X",
K
kexinzhao 已提交
104 105 106 107
        "(Tensor) The input tensor of pooling operator. "
        "The format of input tensor is NCHW, where N is batch size, C is the "
        "number of channels, H is the height of the image, "
        "and W is the width of the image.");
C
chengduoZH 已提交
108
    AddOutput("Out",
K
kexinzhao 已提交
109 110 111 112 113
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is "
              "the number of channels, H is the height of the image "
              "and W is the width of the image.");
C
chengduoZH 已提交
114
    AddOutput("Mask",
K
kexinzhao 已提交
115 116 117 118 119 120
              "(Tensor) The Mask tensor of pooling operator."
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is the number of channels, "
              "H is the height of the image, "
              "and W is the width of the image. "
              "It represents the index in the current feature map.");
C
chengduoZH 已提交
121

C
fix bug  
chengduoZH 已提交
122
    AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
123 124
                              "(vector<int>) The pooling window size(height, "
                              "width) of pooling operator. "
C
chengduoZH 已提交
125
                              "If global_pooling = true, ksize and paddings "
C
fix bug  
chengduoZH 已提交
126 127
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
128
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
129
    AddAttr<bool>(
C
chengduoZH 已提交
130
        "global_pooling",
C
chengduoZH 已提交
131
        "(bool, default:false) Whether to use the global pooling. "
C
chengduoZH 已提交
132
        "If global_pooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
133
        .SetDefault(false);
K
kexinzhao 已提交
134 135 136
    AddAttr<std::vector<int>>("strides",
                              "(vector<int>, default {1, 1}), strides(height, "
                              "width) of pooling operator.")
C
chengduoZH 已提交
137
        .SetDefault({1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
138
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
139 140
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
141
        "(vector<int>, default:{0, 0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
142
        "operator. "
C
chengduoZH 已提交
143
        "If global_pooling = true, paddings and will be ignored.")
C
chengduoZH 已提交
144
        .SetDefault({0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
145
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
146 147

    AddComment(R"DOC(
K
kexinzhao 已提交
148 149
MaxPool2d Operator.

C
chengduoZH 已提交
150
The maxPooling2d with index operation calculates the output and the mask
K
kexinzhao 已提交
151 152 153 154
based on the input, ksize, strides, and paddings parameters. Input(X) and
output(Out, Mask) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, 
and W is the width of the feature.
C
chengduoZH 已提交
155 156
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
157 158 159 160
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
K
kexinzhao 已提交
161
       X shape: $(N, C, H_{in}, W_{in})$
C
chengduoZH 已提交
162
  Output:
K
kexinzhao 已提交
163 164
       Out shape: $(N, C, H_{out}, W_{out})$
       Mask shape: $(N, C, H_{out}, W_{out})$
C
chengduoZH 已提交
165
  Where
K
kexinzhao 已提交
166
       $$
C
chengduoZH 已提交
167 168
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
169 170
       $$

C
chengduoZH 已提交
171 172 173 174 175 176
)DOC");
  }
};

class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
177
  void Make() override {
K
kexinzhao 已提交
178 179 180 181 182 183
    AddInput("X",
             "(Tensor) The input tensor of pooling operator. "
             "The format of input tensor is NCDHW, where N is batch size, C is "
             "the number of channels, and D, H and W are the depth, height and "
             "width of "
             "the image, respectively");
C
chengduoZH 已提交
184
    AddOutput("Out",
K
kexinzhao 已提交
185 186 187 188 189
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCDHW, "
              "where N is the batch size, C is the number of channels, "
              "and D, H and W are the depth, height and "
              "width of the image, respectively.");
C
chengduoZH 已提交
190
    AddOutput("Mask",
K
kexinzhao 已提交
191 192 193 194 195 196
              "(Tensor) The Mask tensor of pooling operator. "
              "The format of output tensor is also NCDHW, "
              "where N is the batch size, C is the number of channels, and "
              "D, H and W are the depth, height and width "
              "of the image, respectively. "
              "It represents the index in the current feature map.");
C
chengduoZH 已提交
197

C
fix bug  
chengduoZH 已提交
198
    AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
199 200
                              "(vector<int>) The pooling window size(depth, "
                              "height, width) of pooling operator. "
C
chengduoZH 已提交
201
                              "If global_pooling = true, ksize and paddings "
C
fix bug  
chengduoZH 已提交
202 203
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
204
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
205
    AddAttr<bool>(
C
chengduoZH 已提交
206
        "global_pooling",
K
kexinzhao 已提交
207
        "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
208
        "If global_pooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
209
        .SetDefault(false);
C
fix doc  
chengduoZH 已提交
210
    AddAttr<std::vector<int>>("strides",
K
kexinzhao 已提交
211
                              "(vector<int>, default {1,1,1}), strides(depth, "
C
fix doc  
chengduoZH 已提交
212
                              "height, width) of pooling operator.")
C
chengduoZH 已提交
213
        .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
214
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
215 216
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
217
        "(vector, default {0,0,0}), paddings(depth, "
K
kexinzhao 已提交
218
        "height, width) of pooling operator. "
C
chengduoZH 已提交
219
        "If global_pooling = true, paddings and ksize will be ignored.")
C
chengduoZH 已提交
220
        .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
221
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
222

C
chengduoZH 已提交
223
    AddComment(R"DOC(
K
kexinzhao 已提交
224 225
MaxPool3d Operator.

C
chengduoZH 已提交
226 227
The maxpooling3d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters.
K
kexinzhao 已提交
228 229 230 231
Input(X) and output(Out, Mask) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. 
Parameters(ksize, strides, paddings) are three elements.
C
chengduoZH 已提交
232
These three elements represent depth, height and width, respectively.
C
chengduoZH 已提交
233 234 235 236
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
K
kexinzhao 已提交
237
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
238
  Output:
K
kexinzhao 已提交
239 240
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
       Mask shape: $(N, C, D_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
241
  Where
K
kexinzhao 已提交
242
       $$
C
chengduoZH 已提交
243 244 245
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
K
kexinzhao 已提交
246 247
       $$

C
chengduoZH 已提交
248 249 250
)DOC");
  }
};
C
chengduoZH 已提交
251

C
chengduoZH 已提交
252 253 254 255 256
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

Y
Yang Yang 已提交
257 258
REGISTER_OPERATOR(max_pool2d_with_index, ops::MaxPoolWithIndexOp,
                  ops::MaxPool2dWithIndexOpMaker,
259 260
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(max_pool2d_with_index_grad, ops::MaxPoolWithIndexOpGrad);
C
chengduoZH 已提交
261 262

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
263
    max_pool2d_with_index,
Q
QI JUN 已提交
264 265 266
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, float, int>,
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, double,
                                int>);
C
chengduoZH 已提交
267
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
268
    max_pool2d_with_index_grad,
Q
QI JUN 已提交
269 270 271
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, float,
                                    int>,
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, double,
272
                                    int>);
C
chengduoZH 已提交
273

Y
Yang Yang 已提交
274 275
REGISTER_OPERATOR(max_pool3d_with_index, ops::MaxPoolWithIndexOp,
                  ops::MaxPool3dWithIndexOpMaker,
276 277
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(max_pool3d_with_index_grad, ops::MaxPoolWithIndexOpGrad);
C
chengduoZH 已提交
278 279

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
280
    max_pool3d_with_index,
Q
QI JUN 已提交
281 282 283
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, float, int>,
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, double,
                                int>);
C
chengduoZH 已提交
284
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
285
    max_pool3d_with_index_grad,
Q
QI JUN 已提交
286 287 288
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, float,
                                    int>,
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, double,
289
                                    int>);