infershape_utils.cc 27.6 KB
Newer Older
C
Chen Weihang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/infershape_utils.h"

17
#include <algorithm>
18 19
#include <string>

20
#include "paddle/fluid/framework/convert_utils.h"
C
Chen Weihang 已提交
21
#include "paddle/fluid/framework/framework.pb.h"
22
#include "paddle/fluid/framework/phi_utils.h"
C
Chen Weihang 已提交
23
#include "paddle/fluid/platform/enforce.h"
24
#include "paddle/phi/common/int_array.h"
25
#include "paddle/phi/common/scalar.h"
26 27 28 29 30
#include "paddle/phi/core/compat/arg_map_context.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/infermeta_utils.h"
31
#include "paddle/phi/core/kernel_factory.h"
32
#include "paddle/phi/core/tensor_utils.h"
C
Chen Weihang 已提交
33 34 35 36

namespace paddle {
namespace framework {

37
class InferShapeArgumentMappingContext : public phi::ArgumentMappingContext {
C
Chen Weihang 已提交
38 39 40 41 42 43 44 45 46 47 48 49
 public:
  explicit InferShapeArgumentMappingContext(const InferShapeContext& ctx)
      : ctx_(ctx) {}

  bool HasInput(const std::string& name) const override {
    return ctx_.HasInput(name);
  }

  bool HasOutput(const std::string& name) const override {
    return ctx_.HasOutput(name);
  }

50 51 52 53
  bool HasAttr(const std::string& name) const override {
    return ctx_.HasAttr(name);
  }

C
Chen Weihang 已提交
54 55 56 57 58 59
  paddle::any Attr(const std::string& name) const override {
    auto& attr = ctx_.Attrs().GetAttr(name);
    return GetAttrValue(attr);
  }

  size_t InputSize(const std::string& name) const override {
60 61 62 63 64 65
    if (ctx_.HasInputs(name)) {
      return ctx_.Inputs(name).size();
    } else if (ctx_.HasInput(name)) {
      return 1;
    }
    return 0;
C
Chen Weihang 已提交
66 67 68 69 70 71 72 73
  }

  size_t OutputSize(const std::string& name) const override {
    return ctx_.Outputs(name).size();
  }

  bool IsDenseTensorInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
74 75 76 77
    return std::all_of(var_types.begin(), var_types.end(),
                       [](const proto::VarType::Type& type) {
                         return type == proto::VarType::LOD_TENSOR;
                       });
C
Chen Weihang 已提交
78 79 80 81
  }

  bool IsSelectedRowsInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
82 83 84 85
    return std::all_of(var_types.begin(), var_types.end(),
                       [](const proto::VarType::Type& type) {
                         return type == proto::VarType::SELECTED_ROWS;
                       });
C
Chen Weihang 已提交
86 87
  }

88 89
  bool IsDenseTensorVectorInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
90 91 92 93
    return std::all_of(var_types.begin(), var_types.end(),
                       [](const proto::VarType::Type& type) {
                         return type == proto::VarType::LOD_TENSOR_ARRAY;
                       });
94 95
  }

96 97
  bool IsDenseTensorOutput(const std::string& name) const override {
    auto var_types = ctx_.GetOutputsVarType(name);
98 99 100 101
    return std::all_of(var_types.begin(), var_types.end(),
                       [](const proto::VarType::Type& type) {
                         return type == proto::VarType::LOD_TENSOR;
                       });
102 103 104 105
  }

  bool IsSelectedRowsOutput(const std::string& name) const override {
    auto var_types = ctx_.GetOutputsVarType(name);
106 107 108 109
    return std::all_of(var_types.begin(), var_types.end(),
                       [](const proto::VarType::Type& type) {
                         return type == proto::VarType::SELECTED_ROWS;
                       });
110 111
  }

112 113
  bool IsForInferShape() const override { return true; }

114 115
  bool IsRuntime() const override { return ctx_.IsRuntime(); }

C
Chen Weihang 已提交
116 117 118 119
 private:
  const InferShapeContext& ctx_;
};

120 121 122 123 124 125 126
int64_t CompatMetaTensor::numel() const {
  if (is_runtime_) {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    return var->Get<Tensor>().numel();
  } else {
    auto* var = BOOST_GET_CONST(VarDesc*, var_);
    return var->ElementSize();
C
Chen Weihang 已提交
127
  }
128
}
C
Chen Weihang 已提交
129

130 131 132 133 134 135 136 137 138 139 140
DDim CompatMetaTensor::dims() const {
  if (is_runtime_) {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      return var->Get<phi::DenseTensor>().dims();
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().dims();
    } else if (var->IsType<framework::LoDTensorArray>()) {
      // use tensor array size as dims
      auto& tensor_array = var->Get<framework::LoDTensorArray>();
      return phi::make_ddim({static_cast<int64_t>(tensor_array.size())});
C
Chen Weihang 已提交
141
    } else {
142 143 144
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can get dims from DenseTensor or SelectedRows or "
          "DenseTensorArray."));
C
Chen Weihang 已提交
145
    }
146 147 148 149 150
  } else {
    auto* var = BOOST_GET_CONST(VarDesc*, var_);

    return var->GetShape().empty() ? phi::make_ddim({0UL})
                                   : phi::make_ddim(var->GetShape());
C
Chen Weihang 已提交
151
  }
152
}
C
Chen Weihang 已提交
153

154 155 156 157 158 159 160 161 162 163 164
phi::DataType CompatMetaTensor::dtype() const {
  if (is_runtime_) {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      return var->Get<phi::DenseTensor>().dtype();
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().dtype();
    } else if (var->IsType<framework::LoDTensorArray>()) {
      // NOTE(chenweihang): do nothing
      // Unsupported get dtype from LoDTensorArray now
      return phi::DataType::UNDEFINED;
C
Chen Weihang 已提交
165
    } else {
166 167
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can get dtype from DenseTensor or SelectedRows."));
C
Chen Weihang 已提交
168
    }
169 170 171
  } else {
    auto* var = BOOST_GET_CONST(VarDesc*, var_);
    return paddle::framework::TransToPhiDataType(var->GetDataType());
C
Chen Weihang 已提交
172
  }
173
}
C
Chen Weihang 已提交
174

175 176 177 178 179 180 181 182
DataLayout CompatMetaTensor::layout() const {
  if (is_runtime_) {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      return var->Get<phi::DenseTensor>().layout();
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().layout();
    } else if (var->IsType<framework::LoDTensorArray>()) {
183
      // NOTE(chenweihang): do nothing
184 185 186 187 188 189
      // Unsupported get layout from LoDTensorArray now
      return phi::DataLayout::UNDEFINED;
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can get layout from DenseTensor or "
          "SelectedRows."));
C
Chen Weihang 已提交
190
    }
191 192 193 194
  } else {
    // NOTE(chenweihang): do nothing
    // Unsupported get layout for VarDesc now
    return DataLayout::UNDEFINED;
C
Chen Weihang 已提交
195
  }
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
}

void CompatMetaTensor::set_dims(const DDim& dims) {
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      auto* tensor = var->GetMutable<phi::DenseTensor>();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
    } else if (var->IsType<phi::SelectedRows>()) {
      auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
    } else if (var->IsType<framework::LoDTensorArray>()) {
      auto* tensor_array = var->GetMutable<framework::LoDTensorArray>();
      // Note: Here I want enforce `tensor_array->size() == 0UL`, because
      // inplace using on LoDTensorArray is dangerous, but the unittest
      // `test_list` contains this behavior
      PADDLE_ENFORCE_EQ(dims.size(), 1UL,
                        platform::errors::InvalidArgument(
                            "LoDTensorArray can only have one dimension."));
      // only set the array size for LoDTensorArray input
      tensor_array->resize(dims[0]);
C
Chen Weihang 已提交
217
    } else {
218 219
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can set dims from DenseTensor or SelectedRows."));
C
Chen Weihang 已提交
220
    }
221 222 223
  } else {
    auto* var = BOOST_GET(VarDesc*, var_);
    var->SetShape(vectorize(dims));
C
Chen Weihang 已提交
224
  }
225 226 227 228 229 230 231 232 233 234 235 236 237 238
}

void CompatMetaTensor::set_dtype(phi::DataType dtype) {
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      auto* tensor = var->GetMutable<phi::DenseTensor>();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
    } else if (var->IsType<phi::SelectedRows>()) {
      auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
    } else if (var->IsType<framework::LoDTensorArray>()) {
      // NOTE(chenweihang): do nothing
      // Unsupported set dtype for LoDTensorArray now
C
Chen Weihang 已提交
239
    } else {
240 241
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can set dtype from DenseTensor or SelectedRows."));
C
Chen Weihang 已提交
242
    }
243 244 245
  } else {
    auto* var = BOOST_GET(VarDesc*, var_);
    var->SetDataType(paddle::framework::TransToProtoVarType(dtype));
C
Chen Weihang 已提交
246
  }
247 248 249 250 251 252 253 254 255 256 257 258
}

void CompatMetaTensor::set_layout(DataLayout layout) {
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      auto* tensor = var->GetMutable<phi::DenseTensor>();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->layout = layout;
    } else if (var->IsType<phi::SelectedRows>()) {
      auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->layout = layout;
    } else if (var->IsType<framework::LoDTensorArray>()) {
259
      // NOTE(chenweihang): do nothing
260 261 262 263 264
      // Unsupported set dtype for LoDTensorArray now
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can set layout from DenseTensor or "
          "SelectedRows."));
C
Chen Weihang 已提交
265
    }
266 267 268
  } else {
    // NOTE(chenweihang): do nothing
    // Unsupported set layout for VarDesc now
C
Chen Weihang 已提交
269
  }
270 271 272 273 274 275 276 277 278
}

void CompatMetaTensor::share_lod(const MetaTensor& meta_tensor) {
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      auto* tensor = var->GetMutable<phi::DenseTensor>();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->lod =
          static_cast<const CompatMetaTensor&>(meta_tensor).GetRuntimeLoD();
C
Chen Weihang 已提交
279
    } else {
280 281
      // NOTE(chenweihang): do nothing
      // only LoDTensor need to share lod
C
Chen Weihang 已提交
282
    }
283 284 285 286
  } else {
    auto* var = BOOST_GET(VarDesc*, var_);
    var->SetLoDLevel(
        static_cast<const CompatMetaTensor&>(meta_tensor).GetCompileTimeLoD());
C
Chen Weihang 已提交
287
  }
288 289 290 291 292 293 294 295 296 297 298 299
}

void CompatMetaTensor::share_dims(const MetaTensor& meta_tensor) {
  set_dims(meta_tensor.dims());
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::SelectedRows>()) {
      auto* selected_rows = var->GetMutable<phi::SelectedRows>();
      auto& input_selected_rows =
          static_cast<const CompatMetaTensor&>(meta_tensor).GetSelectedRows();
      selected_rows->set_rows(input_selected_rows.rows());
      selected_rows->set_height(input_selected_rows.height());
300
    }
301
  }
302 303 304 305 306 307 308 309 310
}

void CompatMetaTensor::share_meta(const MetaTensor& meta_tensor) {
  share_dims(meta_tensor);
  set_dtype(meta_tensor.dtype());
  set_layout(meta_tensor.layout());
  // special case: share lod of LoDTensor
  share_lod(meta_tensor);
}
C
Chen Weihang 已提交
311

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
void CompatInferMetaContext::EmplaceBackInput(CompatMetaTensor input) {
  int index = compat_inputs_.size();
  compat_inputs_.emplace_back(std::move(input));
  input_range_.emplace_back(std::pair<int, int>(index, index + 1));
}
void CompatInferMetaContext::EmplaceBackOutput(CompatMetaTensor output) {
  int index = compat_outputs_.size();
  compat_outputs_.emplace_back(std::move(output));
  output_range_.emplace_back(std::pair<int, int>(index, index + 1));
}

void CompatInferMetaContext::EmplaceBackInputs(
    paddle::SmallVector<CompatMetaTensor, phi::kInputSmallVectorSize> inputs) {
  int index = compat_inputs_.size();
  input_range_.emplace_back(std::pair<int, int>(index, index + inputs.size()));
  compat_inputs_.insert(compat_inputs_.end(),
                        std::make_move_iterator(inputs.begin()),
                        std::make_move_iterator(inputs.end()));
}

void CompatInferMetaContext::EmplaceBackOutputs(
    paddle::SmallVector<CompatMetaTensor, phi::kOutputSmallVectorSize>
        outputs) {
  int index = compat_outputs_.size();
  output_range_.emplace_back(
      std::pair<int, int>(index, index + outputs.size()));
  compat_outputs_.insert(compat_outputs_.end(),
                         std::make_move_iterator(outputs.begin()),
                         std::make_move_iterator(outputs.end()));
}

const phi::MetaTensor& CompatInferMetaContext::InputAt(size_t idx) const {
  return compat_inputs_.at(idx);
}

paddle::optional<const phi::MetaTensor&>
CompatInferMetaContext::OptionalInputAt(size_t idx) const {
  const auto& input = compat_inputs_.at(idx);
  return input.initialized()
             ? paddle::optional<const phi::MetaTensor&>{input}
             : paddle::optional<const phi::MetaTensor&>{paddle::none};
}

std::vector<const phi::MetaTensor*> CompatInferMetaContext::InputsBetween(
    size_t start, size_t end) const {
  std::vector<const phi::MetaTensor*> result;
  result.reserve(end - start);

  for (size_t i = start; i < end; ++i) {
    auto& in = compat_inputs_.at(i);
    result.emplace_back(in.initialized() ? &in : nullptr);
  }

  return result;
}

paddle::optional<const std::vector<const phi::MetaTensor*>>
CompatInferMetaContext::OptionalInputsBetween(size_t start, size_t end) const {
  const auto& first = compat_inputs_.at(start);

  if (first.initialized()) {
    std::vector<const phi::MetaTensor*> result;
    result.reserve(end - start);

    for (size_t i = start; i < end; ++i) {
      auto& in = compat_inputs_.at(i);
      result.emplace_back(in.initialized() ? &in : nullptr);
    }

    return paddle::optional<const std::vector<const phi::MetaTensor*>>(result);
  }
  return paddle::optional<const std::vector<const phi::MetaTensor*>>(
      paddle::none);
}

phi::MetaTensor* CompatInferMetaContext::MutableOutputAt(size_t idx) {
  auto& out = compat_outputs_.at(idx);
  return out.initialized() ? &out : nullptr;
}

std::vector<phi::MetaTensor*> CompatInferMetaContext::MutableOutputBetween(
    size_t start, size_t end) {
  std::vector<phi::MetaTensor*> result;
  result.reserve(end - start);
  for (size_t i = start; i < end; ++i) {
    auto& out = compat_outputs_.at(i);
    result.emplace_back(out.initialized() ? &out : nullptr);
  }
  return result;
}

CompatInferMetaContext BuildInferMetaContext(InferShapeContext* ctx,
                                             const std::string& op_type) {
405
  // 1. get kernel args
406
  auto* arg_map_fn = ctx->GetPhiArgumentMappingFn();
407
  InferShapeArgumentMappingContext arg_map_context(*ctx);
408 409 410
  phi::KernelSignature signature = arg_map_fn
                                       ? (*arg_map_fn)(arg_map_context)
                                       : *ctx->GetPhiDefaultKernelSignature();
411 412 413
  VLOG(3) << "BuildInferMetaContext: op kernel signature - " << signature;

  // 2. build infermeta context
414
  CompatInferMetaContext infer_meta_context(
F
From00 已提交
415
      {ctx->IsRuntime(), ctx->IsRunMKLDNNKernel()});
416

417 418 419
  const auto& input_names = signature.input_names;
  const auto& attr_names = signature.attr_names;
  const auto& output_names = signature.output_names;
420

421 422 423
  const auto& args_def =
      phi::KernelFactory::Instance().GetFirstKernelArgsDef(signature.name);
  const auto& attr_defs = args_def.attribute_defs();
424

425
  for (auto& in_name : input_names) {
426
    if (ctx->HasInputs(in_name)) {
427
      auto input_var = std::move(ctx->GetInputVarPtrs(in_name));
428 429
      if (input_var.size() == 1) {
        infer_meta_context.EmplaceBackInput(
430
            std::move(CompatMetaTensor(input_var[0], ctx->IsRuntime())));
431
      } else {
432 433
        paddle::SmallVector<CompatMetaTensor, phi::kInputSmallVectorSize>
            inputs;
434
        for (const auto& in : input_var) {
435 436
          inputs.emplace_back(
              std::move(CompatMetaTensor(in, ctx->IsRuntime())));
437 438 439
        }
        infer_meta_context.EmplaceBackInputs(std::move(inputs));
      }
440
    } else {
441 442
      infer_meta_context.EmplaceBackInput(
          std::move(CompatMetaTensor(ctx->IsRuntime())));
443
    }
444
  }
445

446 447
  VLOG(6) << "BuildInferMetaContext: Done inputs";

448
  auto attr_reader = ctx->Attrs();
449
  for (size_t i = 0; i < attr_names.size(); ++i) {
450
    auto& attr_name = attr_names[i];
451
    if (attr_defs[i].type_index == phi::AttributeType::INT_ARRAY) {
452
      // When attr is a vector_tensor or tensor, transform it to IntArray
453
      if (ctx->HasInputs(attr_name) || ctx->HasInput(attr_name)) {
454
        auto infershape_inputs = std::move(ctx->GetInputVarPtrs(attr_name));
455
        if (ctx->IsRuntime()) {
456
          // If is in runtime, we will get tensor's value for IntArray
457 458 459 460 461 462 463 464
          // and push it into attrs
          std::vector<Variable*> vars;
          vars.reserve(infershape_inputs.size());
          for (size_t i = 0; i < infershape_inputs.size(); i++) {
            vars.push_back(BOOST_GET_CONST(Variable*, infershape_inputs[i]));
          }
          if (infershape_inputs.size() != 1) {
            infer_meta_context.EmplaceBackAttr(
465
                std::move(experimental::MakePhiIntArrayFromVarList(vars)));
466 467
          } else {
            infer_meta_context.EmplaceBackAttr(
468
                std::move(experimental::MakePhiIntArrayFromVar(*vars[0])));
469 470
          }
        } else {
471
          // If is not in runtime, we will set default value(-1) for IntArray
472 473
          std::vector<VarDesc*> vars;
          vars.reserve(infershape_inputs.size());
474
          for (size_t i = 0; i < infershape_inputs.size(); ++i) {
475 476
            vars.push_back(BOOST_GET_CONST(VarDesc*, infershape_inputs[i]));
          }
477

478
          int64_t num_ele = 0;
479 480 481
          if (vars.size() == 1) {
            num_ele = 1;
            const auto& tensor_dims = vars[0]->GetShape();
482 483 484
            for (size_t i = 0; i < tensor_dims.size(); ++i) {
              num_ele *= tensor_dims[i];
            }
485 486 487

            if (num_ele <= 0) {
              PADDLE_THROW(platform::errors::Unimplemented(
488
                  "Invalid number for construct phi::IntArray, expected "
489 490 491 492
                  "number > 0, but actually is %d. ",
                  num_ele));
            }

493
          } else {
494
            num_ele = vars.size();
495
          }
496
          phi::IntArray tensor_attr(std::vector<int32_t>(num_ele, -1));
497 498 499 500 501
          tensor_attr.SetFromTensor(true);
          infer_meta_context.EmplaceBackAttr(std::move(tensor_attr));
        }
      } else if (ctx->HasAttr(attr_name)) {
        auto& attr = attr_reader.GetAttr(attr_name);
502
        if (AttrTypeID(attr) == proto::AttrType::INTS) {
503
          infer_meta_context.EmplaceBackAttr(std::move(
504
              phi::IntArray(BOOST_GET_CONST(std::vector<int32_t>, attr))));
505
        } else if (AttrTypeID(attr) == proto::AttrType::LONGS) {
506
          infer_meta_context.EmplaceBackAttr(std::move(
507
              phi::IntArray(BOOST_GET_CONST(std::vector<int64_t>, attr))));
508
        } else if (AttrTypeID(attr) == proto::AttrType::INT) {
509
          infer_meta_context.EmplaceBackAttr(
510
              phi::IntArray({BOOST_GET_CONST(int, attr)}));
511 512
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
513
              "Unsupported cast op attribute `%s` to IntArray when "
514
              "construct InferMetaContext.",
515 516 517
              attr_name));
        }
      }
518
    } else if (attr_defs[i].type_index == phi::AttributeType::SCALAR) {
519 520 521
      if (ctx->HasAttr(attr_name)) {
        // TODO(chentianyu03): support other attrs later
        auto& attr = attr_reader.GetAttr(attr_name);
522
        if (AttrTypeID(attr) == proto::AttrType::FLOAT) {
523 524
          infer_meta_context.EmplaceBackAttr(
              phi::Scalar(BOOST_GET_CONST(float, attr)));
525
        } else if (AttrTypeID(attr) == proto::AttrType::STRING) {
526 527
          infer_meta_context.EmplaceBackAttr(
              phi::Scalar(BOOST_GET_CONST(std::string, attr)));
528
        } else if (AttrTypeID(attr) == proto::AttrType::INT) {
529 530 531 532 533 534 535 536 537
          infer_meta_context.EmplaceBackAttr(
              phi::Scalar(BOOST_GET_CONST(int, attr)));
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "InferMetaContext.",
              attr_name));
        }
      } else if (ctx->HasInput(attr_name)) {
538
        auto infershape_input = std::move(ctx->GetInputVarPtrs(attr_name));
539 540 541 542
        if (infershape_input.size() == 1) {
          if (ctx->IsRuntime()) {
            Variable* var = BOOST_GET_CONST(Variable*, infershape_input[0]);
            infer_meta_context.EmplaceBackAttr(
543
                std::move(experimental::MakePhiScalarFromVar(*var)));
544 545 546 547 548 549 550 551 552 553 554 555
          } else {
            phi::Scalar tensor_scalar(-1);
            tensor_scalar.SetFromTensor(true);
            infer_meta_context.EmplaceBackAttr(std::move(tensor_scalar));
          }
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Invalid input.size() when cast op attribute `%s` to Scalar, "
              "expected 1, but actually is %d .",
              attr_name, infershape_input.size()));
        }
      }
556
    } else if (attr_defs[i].type_index == phi::AttributeType::SCALARS) {
557
      auto& attr = attr_reader.GetAttr(attr_name);
558
      if (AttrTypeID(attr) == proto::AttrType::INTS) {
559 560 561 562 563 564 565
        const auto& vec = BOOST_GET_CONST(std::vector<int32_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
566
      } else if (AttrTypeID(attr) == proto::AttrType::LONGS) {
567 568 569 570 571 572 573
        const auto& vec = BOOST_GET_CONST(std::vector<int64_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
574
      } else if (AttrTypeID(attr) == proto::AttrType::FLOATS) {
575 576 577 578 579 580 581
        const auto& vec = BOOST_GET_CONST(std::vector<float>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
582
      } else if (AttrTypeID(attr) == proto::AttrType::FLOAT64S) {
583 584 585 586 587 588 589 590 591 592 593 594 595
        const auto& vec = BOOST_GET_CONST(std::vector<double>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported cast op attribute `%s` to vector<Scalar> when "
            "construct InferMetaContext.",
            attr_names[i]));
      }
596 597
    } else if (ctx->HasAttr(attr_name)) {
      // Emplace Back Attr according to the type of attr.
598
      auto& attr = attr_reader.GetAttr(attr_name);
599
      if (attr_defs[i].type_index == phi::AttributeType::BOOL) {
600
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
601
      } else if (attr_defs[i].type_index == phi::AttributeType::INT32) {
602
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(int, attr));
603
      } else if (attr_defs[i].type_index == phi::AttributeType::INT64) {
604
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(int64_t, attr));
605
      } else if (attr_defs[i].type_index == phi::AttributeType::FLOAT32) {
606
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(float, attr));
607
      } else if (attr_defs[i].type_index == phi::AttributeType::STRING) {
608
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(std::string, attr));
609
      } else if (attr_defs[i].type_index == phi::AttributeType::BOOLS) {
610 611
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<bool>, attr));
612
      } else if (attr_defs[i].type_index == phi::AttributeType::INT32S) {
613 614
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<int>, attr));
615 616
      } else if (attr_defs[i].type_index == phi::AttributeType::INT64S) {
        if (AttrTypeID(attr) == proto::AttrType::INTS) {
617 618 619 620 621 622 623 624 625
          // Emplace Back Attr according to the type of Phi_Kernel args.
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
          infer_meta_context.EmplaceBackAttr(vector_int64_attr);
        } else {
          infer_meta_context.EmplaceBackAttr(
              BOOST_GET_CONST(std::vector<int64_t>, attr));
        }
626
      } else if (attr_defs[i].type_index == phi::AttributeType::FLOAT32S) {
627 628
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<float>, attr));
629
      } else if (attr_defs[i].type_index == phi::AttributeType::FLOAT64S) {
630 631
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<double>, attr));
632
      } else if (attr_defs[i].type_index == phi::AttributeType::STRINGS) {
633 634
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<std::string>, attr));
635
      } else if (attr_defs[i].type_index == phi::AttributeType::DATA_TYPE) {
636
        auto data_type = paddle::framework::TransToPhiDataType(
637 638 639
            static_cast<framework::proto::VarType::Type>(
                BOOST_GET_CONST(int, attr)));
        infer_meta_context.EmplaceBackAttr(data_type);
640
      } else {
641 642 643
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported attribute type is received when call "
            "InferShapeFunctor."));
644
      }
H
hong 已提交
645 646
    } else if (ctx->HasInput(attr_name)) {
      // convert from data
647
      if (attr_defs[i].type_index == phi::AttributeType::INT32) {
H
hong 已提交
648
        if (ctx->IsRuntime()) {
649
          auto infershape_inputs = std::move(ctx->GetInputVarPtrs(attr_name));
H
hong 已提交
650 651 652 653 654 655 656 657 658 659 660
          auto var_temp = BOOST_GET_CONST(Variable*, infershape_inputs[i]);
          auto val = experimental::MakePhiScalarFromVar(*var_temp);
          int32_t val_int = val.template to<int32_t>();
          infer_meta_context.EmplaceBackAttr(val_int);
        } else {
          infer_meta_context.EmplaceBackAttr(-1);
        }
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Get value from variable only support int yet"));
      }
661 662 663
    }
  }

664 665
  VLOG(6) << "BuildInferMetaContext: Done attrs";

666
  for (auto& out_name : output_names) {
667
    if (ctx->HasOutputs(out_name, true)) {
668
      auto output_var = std::move(ctx->GetOutputVarPtrs(out_name));
669
      if (output_var.size() == 1) {
670 671
        infer_meta_context.EmplaceBackOutput(
            std::move(CompatMetaTensor(output_var[0], ctx->IsRuntime())));
672
      } else {
673 674
        paddle::SmallVector<CompatMetaTensor, phi::kOutputSmallVectorSize>
            outputs;
675
        for (const auto& out : output_var) {
676 677 678
          if (ctx->IsRuntime()) {
            if (BOOST_GET_CONST(Variable*, out)) {
              outputs.emplace_back(
679
                  std::move(CompatMetaTensor(out, ctx->IsRuntime())));
680 681 682 683
              continue;
            }
          } else if (BOOST_GET_CONST(VarDesc*, out)) {
            outputs.emplace_back(
684
                std::move(CompatMetaTensor(out, ctx->IsRuntime())));
685 686
            continue;
          }
687
          outputs.emplace_back(std::move(CompatMetaTensor(ctx->IsRuntime())));
688 689 690 691
        }
        infer_meta_context.EmplaceBackOutputs(std::move(outputs));
      }
    } else {
692 693
      infer_meta_context.EmplaceBackOutput(
          std::move(CompatMetaTensor(ctx->IsRuntime())));
694
    }
695 696
  }

697 698
  VLOG(6) << "BuildInferMetaContext: Done outputs";

699 700 701
  return infer_meta_context;
}

C
Chen Weihang 已提交
702 703
}  // namespace framework
}  // namespace paddle