infershape_utils.cc 28.4 KB
Newer Older
C
Chen Weihang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/infershape_utils.h"

17
#include <algorithm>
18 19
#include <string>

20
#include "paddle/fluid/framework/convert_utils.h"
C
Chen Weihang 已提交
21
#include "paddle/fluid/framework/framework.pb.h"
22
#include "paddle/fluid/framework/phi_utils.h"
C
Chen Weihang 已提交
23
#include "paddle/fluid/platform/enforce.h"
24
#include "paddle/phi/common/int_array.h"
25
#include "paddle/phi/common/scalar.h"
26 27 28 29 30 31
#include "paddle/phi/core/compat/arg_map_context.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/core/tensor_utils.h"
C
Chen Weihang 已提交
32 33 34 35

namespace paddle {
namespace framework {

36
class InferShapeArgumentMappingContext : public phi::ArgumentMappingContext {
C
Chen Weihang 已提交
37 38 39 40 41 42 43 44 45 46 47 48
 public:
  explicit InferShapeArgumentMappingContext(const InferShapeContext& ctx)
      : ctx_(ctx) {}

  bool HasInput(const std::string& name) const override {
    return ctx_.HasInput(name);
  }

  bool HasOutput(const std::string& name) const override {
    return ctx_.HasOutput(name);
  }

49 50 51 52
  bool HasAttr(const std::string& name) const override {
    return ctx_.HasAttr(name);
  }

C
Chen Weihang 已提交
53 54 55 56 57 58
  paddle::any Attr(const std::string& name) const override {
    auto& attr = ctx_.Attrs().GetAttr(name);
    return GetAttrValue(attr);
  }

  size_t InputSize(const std::string& name) const override {
59 60 61 62 63 64
    if (ctx_.HasInputs(name)) {
      return ctx_.Inputs(name).size();
    } else if (ctx_.HasInput(name)) {
      return 1;
    }
    return 0;
C
Chen Weihang 已提交
65 66 67 68 69 70 71 72
  }

  size_t OutputSize(const std::string& name) const override {
    return ctx_.Outputs(name).size();
  }

  bool IsDenseTensorInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
73 74 75 76
    return std::all_of(var_types.begin(), var_types.end(),
                       [](const proto::VarType::Type& type) {
                         return type == proto::VarType::LOD_TENSOR;
                       });
C
Chen Weihang 已提交
77 78 79 80
  }

  bool IsSelectedRowsInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
81 82 83 84
    return std::all_of(var_types.begin(), var_types.end(),
                       [](const proto::VarType::Type& type) {
                         return type == proto::VarType::SELECTED_ROWS;
                       });
C
Chen Weihang 已提交
85 86
  }

87 88
  bool IsDenseTensorVectorInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
89 90 91 92
    return std::all_of(var_types.begin(), var_types.end(),
                       [](const proto::VarType::Type& type) {
                         return type == proto::VarType::LOD_TENSOR_ARRAY;
                       });
93 94
  }

95 96
  bool IsDenseTensorOutput(const std::string& name) const override {
    auto var_types = ctx_.GetOutputsVarType(name);
97 98 99 100
    return std::all_of(var_types.begin(), var_types.end(),
                       [](const proto::VarType::Type& type) {
                         return type == proto::VarType::LOD_TENSOR;
                       });
101 102 103 104
  }

  bool IsSelectedRowsOutput(const std::string& name) const override {
    auto var_types = ctx_.GetOutputsVarType(name);
105 106 107 108
    return std::all_of(var_types.begin(), var_types.end(),
                       [](const proto::VarType::Type& type) {
                         return type == proto::VarType::SELECTED_ROWS;
                       });
109 110
  }

111 112
  bool IsForInferShape() const override { return true; }

113 114
  bool IsRuntime() const override { return ctx_.IsRuntime(); }

C
Chen Weihang 已提交
115 116 117 118
 private:
  const InferShapeContext& ctx_;
};

119 120 121 122 123 124 125
int64_t CompatMetaTensor::numel() const {
  if (is_runtime_) {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    return var->Get<Tensor>().numel();
  } else {
    auto* var = BOOST_GET_CONST(VarDesc*, var_);
    return var->ElementSize();
C
Chen Weihang 已提交
126
  }
127
}
C
Chen Weihang 已提交
128

129 130 131 132 133 134 135 136 137 138 139
DDim CompatMetaTensor::dims() const {
  if (is_runtime_) {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      return var->Get<phi::DenseTensor>().dims();
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().dims();
    } else if (var->IsType<framework::LoDTensorArray>()) {
      // use tensor array size as dims
      auto& tensor_array = var->Get<framework::LoDTensorArray>();
      return phi::make_ddim({static_cast<int64_t>(tensor_array.size())});
C
Chen Weihang 已提交
140
    } else {
141 142 143
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can get dims from DenseTensor or SelectedRows or "
          "DenseTensorArray."));
C
Chen Weihang 已提交
144
    }
145 146 147 148 149
  } else {
    auto* var = BOOST_GET_CONST(VarDesc*, var_);

    return var->GetShape().empty() ? phi::make_ddim({0UL})
                                   : phi::make_ddim(var->GetShape());
C
Chen Weihang 已提交
150
  }
151
}
C
Chen Weihang 已提交
152

153 154 155 156 157 158 159 160 161 162 163
phi::DataType CompatMetaTensor::dtype() const {
  if (is_runtime_) {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      return var->Get<phi::DenseTensor>().dtype();
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().dtype();
    } else if (var->IsType<framework::LoDTensorArray>()) {
      // NOTE(chenweihang): do nothing
      // Unsupported get dtype from LoDTensorArray now
      return phi::DataType::UNDEFINED;
C
Chen Weihang 已提交
164
    } else {
165 166
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can get dtype from DenseTensor or SelectedRows."));
C
Chen Weihang 已提交
167
    }
168 169 170
  } else {
    auto* var = BOOST_GET_CONST(VarDesc*, var_);
    return paddle::framework::TransToPhiDataType(var->GetDataType());
C
Chen Weihang 已提交
171
  }
172
}
C
Chen Weihang 已提交
173

174 175 176 177 178 179 180 181
DataLayout CompatMetaTensor::layout() const {
  if (is_runtime_) {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      return var->Get<phi::DenseTensor>().layout();
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().layout();
    } else if (var->IsType<framework::LoDTensorArray>()) {
182
      // NOTE(chenweihang): do nothing
183 184 185 186 187 188
      // Unsupported get layout from LoDTensorArray now
      return phi::DataLayout::UNDEFINED;
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can get layout from DenseTensor or "
          "SelectedRows."));
C
Chen Weihang 已提交
189
    }
190 191 192 193
  } else {
    // NOTE(chenweihang): do nothing
    // Unsupported get layout for VarDesc now
    return DataLayout::UNDEFINED;
C
Chen Weihang 已提交
194
  }
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
}

void CompatMetaTensor::set_dims(const DDim& dims) {
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      auto* tensor = var->GetMutable<phi::DenseTensor>();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
    } else if (var->IsType<phi::SelectedRows>()) {
      auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
    } else if (var->IsType<framework::LoDTensorArray>()) {
      auto* tensor_array = var->GetMutable<framework::LoDTensorArray>();
      // Note: Here I want enforce `tensor_array->size() == 0UL`, because
      // inplace using on LoDTensorArray is dangerous, but the unittest
      // `test_list` contains this behavior
      PADDLE_ENFORCE_EQ(dims.size(), 1UL,
                        platform::errors::InvalidArgument(
                            "LoDTensorArray can only have one dimension."));
      // only set the array size for LoDTensorArray input
      tensor_array->resize(dims[0]);
C
Chen Weihang 已提交
216
    } else {
217 218
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can set dims from DenseTensor or SelectedRows."));
C
Chen Weihang 已提交
219
    }
220 221 222
  } else {
    auto* var = BOOST_GET(VarDesc*, var_);
    var->SetShape(vectorize(dims));
C
Chen Weihang 已提交
223
  }
224 225 226 227 228 229 230 231 232 233 234 235 236 237
}

void CompatMetaTensor::set_dtype(phi::DataType dtype) {
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      auto* tensor = var->GetMutable<phi::DenseTensor>();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
    } else if (var->IsType<phi::SelectedRows>()) {
      auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
    } else if (var->IsType<framework::LoDTensorArray>()) {
      // NOTE(chenweihang): do nothing
      // Unsupported set dtype for LoDTensorArray now
C
Chen Weihang 已提交
238
    } else {
239 240
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can set dtype from DenseTensor or SelectedRows."));
C
Chen Weihang 已提交
241
    }
242 243 244
  } else {
    auto* var = BOOST_GET(VarDesc*, var_);
    var->SetDataType(paddle::framework::TransToProtoVarType(dtype));
C
Chen Weihang 已提交
245
  }
246 247 248 249 250 251 252 253 254 255 256 257
}

void CompatMetaTensor::set_layout(DataLayout layout) {
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      auto* tensor = var->GetMutable<phi::DenseTensor>();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->layout = layout;
    } else if (var->IsType<phi::SelectedRows>()) {
      auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->layout = layout;
    } else if (var->IsType<framework::LoDTensorArray>()) {
258
      // NOTE(chenweihang): do nothing
259 260 261 262 263
      // Unsupported set dtype for LoDTensorArray now
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can set layout from DenseTensor or "
          "SelectedRows."));
C
Chen Weihang 已提交
264
    }
265 266 267
  } else {
    // NOTE(chenweihang): do nothing
    // Unsupported set layout for VarDesc now
C
Chen Weihang 已提交
268
  }
269 270 271 272 273 274 275 276 277
}

void CompatMetaTensor::share_lod(const MetaTensor& meta_tensor) {
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      auto* tensor = var->GetMutable<phi::DenseTensor>();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->lod =
          static_cast<const CompatMetaTensor&>(meta_tensor).GetRuntimeLoD();
C
Chen Weihang 已提交
278
    } else {
279 280
      // NOTE(chenweihang): do nothing
      // only LoDTensor need to share lod
C
Chen Weihang 已提交
281
    }
282 283 284 285
  } else {
    auto* var = BOOST_GET(VarDesc*, var_);
    var->SetLoDLevel(
        static_cast<const CompatMetaTensor&>(meta_tensor).GetCompileTimeLoD());
C
Chen Weihang 已提交
286
  }
287 288 289 290 291 292 293 294 295 296 297 298
}

void CompatMetaTensor::share_dims(const MetaTensor& meta_tensor) {
  set_dims(meta_tensor.dims());
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::SelectedRows>()) {
      auto* selected_rows = var->GetMutable<phi::SelectedRows>();
      auto& input_selected_rows =
          static_cast<const CompatMetaTensor&>(meta_tensor).GetSelectedRows();
      selected_rows->set_rows(input_selected_rows.rows());
      selected_rows->set_height(input_selected_rows.height());
299
    }
300
  }
301 302 303 304 305 306 307 308 309
}

void CompatMetaTensor::share_meta(const MetaTensor& meta_tensor) {
  share_dims(meta_tensor);
  set_dtype(meta_tensor.dtype());
  set_layout(meta_tensor.layout());
  // special case: share lod of LoDTensor
  share_lod(meta_tensor);
}
C
Chen Weihang 已提交
310

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
void CompatInferMetaContext::EmplaceBackInput(CompatMetaTensor input) {
  int index = compat_inputs_.size();
  compat_inputs_.emplace_back(std::move(input));
  input_range_.emplace_back(std::pair<int, int>(index, index + 1));
}
void CompatInferMetaContext::EmplaceBackOutput(CompatMetaTensor output) {
  int index = compat_outputs_.size();
  compat_outputs_.emplace_back(std::move(output));
  output_range_.emplace_back(std::pair<int, int>(index, index + 1));
}

void CompatInferMetaContext::EmplaceBackInputs(
    paddle::SmallVector<CompatMetaTensor, phi::kInputSmallVectorSize> inputs) {
  int index = compat_inputs_.size();
  input_range_.emplace_back(std::pair<int, int>(index, index + inputs.size()));
  compat_inputs_.insert(compat_inputs_.end(),
                        std::make_move_iterator(inputs.begin()),
                        std::make_move_iterator(inputs.end()));
}

void CompatInferMetaContext::EmplaceBackOutputs(
    paddle::SmallVector<CompatMetaTensor, phi::kOutputSmallVectorSize>
        outputs) {
  int index = compat_outputs_.size();
  output_range_.emplace_back(
      std::pair<int, int>(index, index + outputs.size()));
  compat_outputs_.insert(compat_outputs_.end(),
                         std::make_move_iterator(outputs.begin()),
                         std::make_move_iterator(outputs.end()));
}

const phi::MetaTensor& CompatInferMetaContext::InputAt(size_t idx) const {
  return compat_inputs_.at(idx);
}

paddle::optional<const phi::MetaTensor&>
CompatInferMetaContext::OptionalInputAt(size_t idx) const {
  const auto& input = compat_inputs_.at(idx);
  return input.initialized()
             ? paddle::optional<const phi::MetaTensor&>{input}
             : paddle::optional<const phi::MetaTensor&>{paddle::none};
}

std::vector<const phi::MetaTensor*> CompatInferMetaContext::InputsBetween(
    size_t start, size_t end) const {
  std::vector<const phi::MetaTensor*> result;
  result.reserve(end - start);

  for (size_t i = start; i < end; ++i) {
    auto& in = compat_inputs_.at(i);
    result.emplace_back(in.initialized() ? &in : nullptr);
  }

  return result;
}

paddle::optional<const std::vector<const phi::MetaTensor*>>
CompatInferMetaContext::OptionalInputsBetween(size_t start, size_t end) const {
  const auto& first = compat_inputs_.at(start);

  if (first.initialized()) {
    std::vector<const phi::MetaTensor*> result;
    result.reserve(end - start);

    for (size_t i = start; i < end; ++i) {
      auto& in = compat_inputs_.at(i);
      result.emplace_back(in.initialized() ? &in : nullptr);
    }

    return paddle::optional<const std::vector<const phi::MetaTensor*>>(result);
  }
  return paddle::optional<const std::vector<const phi::MetaTensor*>>(
      paddle::none);
}

phi::MetaTensor* CompatInferMetaContext::MutableOutputAt(size_t idx) {
  auto& out = compat_outputs_.at(idx);
  return out.initialized() ? &out : nullptr;
}

std::vector<phi::MetaTensor*> CompatInferMetaContext::MutableOutputBetween(
    size_t start, size_t end) {
  std::vector<phi::MetaTensor*> result;
  result.reserve(end - start);
  for (size_t i = start; i < end; ++i) {
    auto& out = compat_outputs_.at(i);
    result.emplace_back(out.initialized() ? &out : nullptr);
  }
  return result;
}

CompatInferMetaContext BuildInferMetaContext(InferShapeContext* ctx,
                                             const std::string& op_type) {
404
  // 1. get kernel args
405
  auto arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_type);
406 407 408 409 410 411 412 413
  PADDLE_ENFORCE_NOT_NULL(
      arg_map_fn, platform::errors::NotFound(
                      "The ArgumentMappingFn of %s op is not found.", op_type));
  InferShapeArgumentMappingContext arg_map_context(*ctx);
  auto signature = arg_map_fn(arg_map_context);
  VLOG(3) << "BuildInferMetaContext: op kernel signature - " << signature;

  // 2. build infermeta context
414
  CompatInferMetaContext infer_meta_context(
F
From00 已提交
415
      {ctx->IsRuntime(), ctx->IsRunMKLDNNKernel()});
416 417

  auto& input_names = std::get<0>(signature.args);
418
  auto& attr_names = std::get<1>(signature.args);
419 420
  auto& output_names = std::get<2>(signature.args);

421 422 423
  const auto& args_def =
      phi::KernelFactory::Instance().GetFirstKernelArgsDef(signature.name);
  const auto& attr_defs = args_def.attribute_defs();
424

425
  for (auto& in_name : input_names) {
426
    if (ctx->HasInputs(in_name)) {
427
      auto input_var = std::move(ctx->GetInputVarPtrs(in_name));
428 429
      if (input_var.size() == 1) {
        infer_meta_context.EmplaceBackInput(
430
            std::move(CompatMetaTensor(input_var[0], ctx->IsRuntime())));
431
      } else {
432 433
        paddle::SmallVector<CompatMetaTensor, phi::kInputSmallVectorSize>
            inputs;
434
        for (const auto& in : input_var) {
435 436
          inputs.emplace_back(
              std::move(CompatMetaTensor(in, ctx->IsRuntime())));
437 438 439
        }
        infer_meta_context.EmplaceBackInputs(std::move(inputs));
      }
440
    } else {
441 442
      infer_meta_context.EmplaceBackInput(
          std::move(CompatMetaTensor(ctx->IsRuntime())));
443
    }
444
  }
445

446 447
  VLOG(6) << "BuildInferMetaContext: Done inputs";

448
  auto attr_reader = ctx->Attrs();
449
  for (size_t i = 0; i < attr_names.size(); ++i) {
450
    auto& attr_name = attr_names[i];
451 452
    if (attr_defs[i].type_index == std::type_index(typeid(phi::IntArray))) {
      // When attr is a vector_tensor or tensor, transform it to IntArray
453
      if (ctx->HasInputs(attr_name) || ctx->HasInput(attr_name)) {
454
        auto infershape_inputs = std::move(ctx->GetInputVarPtrs(attr_name));
455
        if (ctx->IsRuntime()) {
456
          // If is in runtime, we will get tensor's value for IntArray
457 458 459 460 461 462 463 464
          // and push it into attrs
          std::vector<Variable*> vars;
          vars.reserve(infershape_inputs.size());
          for (size_t i = 0; i < infershape_inputs.size(); i++) {
            vars.push_back(BOOST_GET_CONST(Variable*, infershape_inputs[i]));
          }
          if (infershape_inputs.size() != 1) {
            infer_meta_context.EmplaceBackAttr(
465
                std::move(experimental::MakePhiIntArrayFromVarList(vars)));
466 467
          } else {
            infer_meta_context.EmplaceBackAttr(
468
                std::move(experimental::MakePhiIntArrayFromVar(*vars[0])));
469 470
          }
        } else {
471
          // If is not in runtime, we will set default value(-1) for IntArray
472 473
          std::vector<VarDesc*> vars;
          vars.reserve(infershape_inputs.size());
474
          for (size_t i = 0; i < infershape_inputs.size(); ++i) {
475 476
            vars.push_back(BOOST_GET_CONST(VarDesc*, infershape_inputs[i]));
          }
477

478
          int64_t num_ele = 0;
479 480 481
          if (vars.size() == 1) {
            num_ele = 1;
            const auto& tensor_dims = vars[0]->GetShape();
482 483 484
            for (size_t i = 0; i < tensor_dims.size(); ++i) {
              num_ele *= tensor_dims[i];
            }
485 486 487

            if (num_ele <= 0) {
              PADDLE_THROW(platform::errors::Unimplemented(
488
                  "Invalid number for construct phi::IntArray, expected "
489 490 491 492
                  "number > 0, but actually is %d. ",
                  num_ele));
            }

493
          } else {
494
            num_ele = vars.size();
495
          }
496
          phi::IntArray tensor_attr(std::vector<int32_t>(num_ele, -1));
497 498 499 500 501 502 503 504
          tensor_attr.SetFromTensor(true);
          infer_meta_context.EmplaceBackAttr(std::move(tensor_attr));
        }
      } else if (ctx->HasAttr(attr_name)) {
        auto& attr = attr_reader.GetAttr(attr_name);
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int32_t>))) {
          infer_meta_context.EmplaceBackAttr(std::move(
505
              phi::IntArray(BOOST_GET_CONST(std::vector<int32_t>, attr))));
506 507 508
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::vector<int64_t>))) {
          infer_meta_context.EmplaceBackAttr(std::move(
509
              phi::IntArray(BOOST_GET_CONST(std::vector<int64_t>, attr))));
510 511 512
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          infer_meta_context.EmplaceBackAttr(
513
              phi::IntArray({BOOST_GET_CONST(int, attr)}));
514 515
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
516
              "Unsupported cast op attribute `%s` to IntArray when "
517
              "construct InferMetaContext.",
518 519 520
              attr_name));
        }
      }
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(phi::Scalar))) {
      if (ctx->HasAttr(attr_name)) {
        // TODO(chentianyu03): support other attrs later
        auto& attr = attr_reader.GetAttr(attr_name);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
          infer_meta_context.EmplaceBackAttr(
              phi::Scalar(BOOST_GET_CONST(float, attr)));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
          infer_meta_context.EmplaceBackAttr(
              phi::Scalar(BOOST_GET_CONST(std::string, attr)));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          infer_meta_context.EmplaceBackAttr(
              phi::Scalar(BOOST_GET_CONST(int, attr)));
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "InferMetaContext.",
              attr_name));
        }
      } else if (ctx->HasInput(attr_name)) {
544
        auto infershape_input = std::move(ctx->GetInputVarPtrs(attr_name));
545 546 547 548
        if (infershape_input.size() == 1) {
          if (ctx->IsRuntime()) {
            Variable* var = BOOST_GET_CONST(Variable*, infershape_input[0]);
            infer_meta_context.EmplaceBackAttr(
549
                std::move(experimental::MakePhiScalarFromVar(*var)));
550 551 552 553 554 555 556 557 558 559 560 561
          } else {
            phi::Scalar tensor_scalar(-1);
            tensor_scalar.SetFromTensor(true);
            infer_meta_context.EmplaceBackAttr(std::move(tensor_scalar));
          }
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Invalid input.size() when cast op attribute `%s` to Scalar, "
              "expected 1, but actually is %d .",
              attr_name, infershape_input.size()));
        }
      }
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(std::vector<phi::Scalar>))) {
      auto& attr = attr_reader.GetAttr(attr_name);
      if (std::type_index(attr.type()) ==
          std::type_index(typeid(std::vector<int32_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int32_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int64_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<float>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<float>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<double>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<double>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported cast op attribute `%s` to vector<Scalar> when "
            "construct InferMetaContext.",
            attr_names[i]));
      }
607 608
    } else if (ctx->HasAttr(attr_name)) {
      // Emplace Back Attr according to the type of attr.
609
      auto& attr = attr_reader.GetAttr(attr_name);
610
      if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
611
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
612
      } else if (attr_defs[i].type_index == std::type_index(typeid(int))) {
613
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(int, attr));
614
      } else if (attr_defs[i].type_index == std::type_index(typeid(int64_t))) {
615
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(int64_t, attr));
616
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
617
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(float, attr));
618
      } else if (attr_defs[i].type_index ==
619 620
                 std::type_index(typeid(std::string))) {
        infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(std::string, attr));
621
      } else if (attr_defs[i].type_index ==
622 623 624
                 std::type_index(typeid(std::vector<bool>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<bool>, attr));
625
      } else if (attr_defs[i].type_index ==
626 627 628
                 std::type_index(typeid(std::vector<int>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<int>, attr));
629
      } else if (attr_defs[i].type_index ==
630
                 std::type_index(typeid(std::vector<int64_t>))) {
631 632 633 634 635 636 637 638 639 640 641 642
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int>))) {
          // Emplace Back Attr according to the type of Phi_Kernel args.
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
          infer_meta_context.EmplaceBackAttr(vector_int64_attr);
        } else {
          infer_meta_context.EmplaceBackAttr(
              BOOST_GET_CONST(std::vector<int64_t>, attr));
        }
      } else if (attr_defs[i].type_index ==
643 644 645
                 std::type_index(typeid(std::vector<float>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<float>, attr));
646
      } else if (attr_defs[i].type_index ==
647 648 649
                 std::type_index(typeid(std::vector<double>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<double>, attr));
650
      } else if (attr_defs[i].type_index ==
651 652 653
                 std::type_index(typeid(std::vector<std::string>))) {
        infer_meta_context.EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<std::string>, attr));
654 655
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(phi::DataType))) {
656
        auto data_type = paddle::framework::TransToPhiDataType(
657 658 659
            static_cast<framework::proto::VarType::Type>(
                BOOST_GET_CONST(int, attr)));
        infer_meta_context.EmplaceBackAttr(data_type);
660
      } else {
661 662 663
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported attribute type is received when call "
            "InferShapeFunctor."));
664
      }
H
hong 已提交
665 666 667 668
    } else if (ctx->HasInput(attr_name)) {
      // convert from data
      if (attr_defs[i].type_index == std::type_index(typeid(int32_t))) {
        if (ctx->IsRuntime()) {
669
          auto infershape_inputs = std::move(ctx->GetInputVarPtrs(attr_name));
H
hong 已提交
670 671 672 673 674 675 676 677 678 679 680
          auto var_temp = BOOST_GET_CONST(Variable*, infershape_inputs[i]);
          auto val = experimental::MakePhiScalarFromVar(*var_temp);
          int32_t val_int = val.template to<int32_t>();
          infer_meta_context.EmplaceBackAttr(val_int);
        } else {
          infer_meta_context.EmplaceBackAttr(-1);
        }
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Get value from variable only support int yet"));
      }
681 682 683
    }
  }

684 685
  VLOG(6) << "BuildInferMetaContext: Done attrs";

686
  for (auto& out_name : output_names) {
687
    if (ctx->HasOutputs(out_name, true)) {
688
      auto output_var = std::move(ctx->GetOutputVarPtrs(out_name));
689
      if (output_var.size() == 1) {
690 691
        infer_meta_context.EmplaceBackOutput(
            std::move(CompatMetaTensor(output_var[0], ctx->IsRuntime())));
692
      } else {
693 694
        paddle::SmallVector<CompatMetaTensor, phi::kOutputSmallVectorSize>
            outputs;
695
        for (const auto& out : output_var) {
696 697 698
          if (ctx->IsRuntime()) {
            if (BOOST_GET_CONST(Variable*, out)) {
              outputs.emplace_back(
699
                  std::move(CompatMetaTensor(out, ctx->IsRuntime())));
700 701 702 703
              continue;
            }
          } else if (BOOST_GET_CONST(VarDesc*, out)) {
            outputs.emplace_back(
704
                std::move(CompatMetaTensor(out, ctx->IsRuntime())));
705 706
            continue;
          }
707
          outputs.emplace_back(std::move(CompatMetaTensor(ctx->IsRuntime())));
708 709 710 711
        }
        infer_meta_context.EmplaceBackOutputs(std::move(outputs));
      }
    } else {
712 713
      infer_meta_context.EmplaceBackOutput(
          std::move(CompatMetaTensor(ctx->IsRuntime())));
714
    }
715 716
  }

717 718
  VLOG(6) << "BuildInferMetaContext: Done outputs";

719 720 721
  return infer_meta_context;
}

C
Chen Weihang 已提交
722 723
}  // namespace framework
}  // namespace paddle