data_feeder.py 18.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import core
Y
Yu Yang 已提交
18
import numpy
C
chengduoZH 已提交
19
import os
20 21
import six
from six.moves import zip, range, xrange
Y
yuyang18 已提交
22
import multiprocessing
Y
Yu Yang 已提交
23

24
from .framework import Variable, default_main_program, _current_expected_place
C
chengduo 已提交
25
from .framework import _cpu_num, _cuda_ids
Y
Yu Yang 已提交
26 27 28
__all__ = ['DataFeeder']


S
sneaxiy 已提交
29
def convert_dtype(dtype):
30 31 32 33 34 35 36 37 38 39 40 41 42
    if isinstance(dtype, str):
        if dtype in [
                'float32', 'int64', 'float64', 'float16', 'int32', 'uint8',
                'bool'
        ]:
            return dtype
        else:
            raise ValueError(
                "dtype must be any of [bool, int32, float32, int64, "
                "float64, uint8]")
    elif dtype == core.VarDesc.VarType.BOOL:
        return 'bool'
    elif dtype == core.VarDesc.VarType.FP32:
S
sneaxiy 已提交
43 44 45 46 47 48 49 50 51 52 53 54
        return 'float32'
    elif dtype == core.VarDesc.VarType.INT64:
        return 'int64'
    elif dtype == core.VarDesc.VarType.FP64:
        return 'float64'
    elif dtype == core.VarDesc.VarType.FP16:
        return 'float16'
    elif dtype == core.VarDesc.VarType.INT32:
        return 'int32'
    elif dtype == core.VarDesc.VarType.UINT8:
        return 'uint8'
    else:
55
        raise ValueError("dtype must be any of [bool,int32, float32, int64, "
S
sneaxiy 已提交
56 57 58
                         "float64, uint8]")


Y
Yu Yang 已提交
59 60 61 62 63
class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
64 65 66 67 68 69 70
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
S
sneaxiy 已提交
71 72
        self.dtype = convert_dtype(dtype)
        self._reset()
Y
Yu Yang 已提交
73

S
sneaxiy 已提交
74
    def _reset(self):
Y
Yu Yang 已提交
75
        self.data = []
S
sneaxiy 已提交
76
        self.lod = [[] for _ in six.moves.range(self.lod_level)]
Y
Yu Yang 已提交
77 78 79 80 81 82 83 84

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
85
            lod[0].append(len(data))
Y
Yu Yang 已提交
86
            for each_data in data:
K
Kexin Zhao 已提交
87
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
88

S
sneaxiy 已提交
89
    def _check_shape(self, shape):
S
sneaxiy 已提交
90 91 92 93 94 95
        for s1, s2 in zip(self.shape, shape):
            if s1 != s2 and s1 >= 0 and s2 >= 0:
                raise ValueError(
                    "Shape not match. What is defined in data layer is {}, but receive {}".
                    format(self.shape, shape))

Y
Yu Yang 已提交
96
    def done(self):
97
        arr = numpy.array(self.data, dtype=self.dtype)
S
sneaxiy 已提交
98 99
        if self.shape:
            if len(arr.shape) != len(self.shape):
S
sneaxiy 已提交
100 101 102 103 104 105
                try:
                    arr = arr.reshape(self.shape)
                except ValueError:
                    raise ValueError(
                        "Reshape error. What is defined in data layer is {}, but receive {}"
                        .format(self.shape, arr.shape))
Y
Yu Yang 已提交
106 107 108
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
109
            t.set_recursive_sequence_lengths(self.lod)
S
sneaxiy 已提交
110
        self._reset()
Y
Yu Yang 已提交
111 112 113
        return t


S
sneaxiy 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
class BatchedTensorProvider(object):
    def __init__(self, feed_list, place, batch_size, generator, drop_last):
        self.place = place
        self.batch_size = batch_size
        self.generator = generator
        self.converters = []
        self.drop_last = drop_last

        for var in feed_list:
            assert var.lod_level == 0, "lod_level must be 0"
            self.converters.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=0,
                    shape=var.shape,
                    dtype=var.dtype))

    def _done(self):
        return [c.done() for c in self.converters]

    def __call__(self):
        idx = 0
        for each_sample in self.generator():
            for each_slot, each_converter in six.moves.zip(each_sample,
                                                           self.converters):
                each_converter.data.append(each_slot)

            idx += 1
            if idx == self.batch_size:
                idx = 0
                yield self._done()

        if not self.drop_last and idx > 0:
            yield self._done()
        else:
            [c._reset() for c in self.converters]


Y
Yu Yang 已提交
152
class DataFeeder(object):
C
chengduoZH 已提交
153
    """
C
chengduoZH 已提交
154 155
    DataFeeder converts the data that returned by a reader into a data
    structure that can feed into Executor and ParallelExecutor. The reader
C
chengduoZH 已提交
156
    usually returns a list of mini-batch data entries. Each data entry in
C
chengduoZH 已提交
157 158
    the list is one sample. Each sample is a list or a tuple with one
    feature or multiple features.
C
chengduoZH 已提交
159 160 161 162 163

    The simple usage shows below:

    ..  code-block:: python

164
        import paddle.fluid as fluid
C
chengduoZH 已提交
165
        place = fluid.CPUPlace()
C
chengduoZH 已提交
166
        img = fluid.layers.data(name='image', shape=[1, 28, 28])
C
chengduoZH 已提交
167
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
C
chengduoZH 已提交
168 169
        feeder = fluid.DataFeeder([img, label], fluid.CPUPlace())
        result = feeder.feed([([0] * 784, [9]), ([1] * 784, [1])])
C
chengduoZH 已提交
170 171 172 173 174 175 176


    If you want to feed data into GPU side separately in advance when you
    use multi-GPU to train a model, you can use `decorate_reader` function.

    ..  code-block:: python

177 178 179
        import paddle
        import paddle.fluid as fluid
        
C
chengduoZH 已提交
180
        place=fluid.CUDAPlace(0)
181 182 183
        data = fluid.layers.data(name='data', shape=[3, 224, 224], dtype='float32')
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
        
C
chengduoZH 已提交
184 185
        feeder = fluid.DataFeeder(place=place, feed_list=[data, label])
        reader = feeder.decorate_reader(
186
                paddle.batch(paddle.dataset.flowers.train(), batch_size=16), multi_devices=True)
C
chengduoZH 已提交
187 188 189 190

    Args:
        feed_list(list): The Variables or Variables'name that will
            feed into model.
C
chengduoZH 已提交
191 192 193 194
        place(Place): place indicates feed data into CPU or GPU, if you want to
            feed data into GPU, please using `fluid.CUDAPlace(i)` (`i` represents
            the GPU id), or if you want to feed data into CPU, please using
            `fluid.CPUPlace()`.
C
chengduoZH 已提交
195 196 197 198
        program(Program): The Program that will feed data into, if program
            is None, it will use default_main_program(). Default None.

    Raises:
C
chengduoZH 已提交
199
        ValueError: If some Variable is not in this Program.
C
chengduoZH 已提交
200 201

    Examples:
202 203
        ..  code-block:: python

C
chengduoZH 已提交
204

205 206 207 208
            import numpy as np
            import paddle
            import paddle.fluid as fluid
            
C
chengduoZH 已提交
209
            place = fluid.CPUPlace()
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
            
            def reader():
                yield [np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32')],
            
            main_program = fluid.Program()
            startup_program = fluid.Program()
            
            with fluid.program_guard(main_program, startup_program):
                data_1 = fluid.layers.data(name='data_1', shape=[1, 2, 2])
                data_2 = fluid.layers.data(name='data_2', shape=[1, 1, 3])
                out = fluid.layers.fc(input=[data_1, data_2], size=2)
                # ...
            
            feeder = fluid.DataFeeder([data_1, data_2], place)
                        
            exe = fluid.Executor(place)
            exe.run(startup_program)
C
chengduoZH 已提交
227 228
            for data in reader():
                outs = exe.run(program=main_program,
229 230 231
                               feed=feeder.feed(data),
                               fetch_list=[out])

C
chengduoZH 已提交
232 233
    """

F
fengjiayi 已提交
234
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
235 236 237 238
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
239 240
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
241
        for each_var in feed_list:
242
            if isinstance(each_var, six.string_types):
F
fengjiayi 已提交
243
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
244 245 246 247 248
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
S
sneaxiy 已提交
249
            self.feed_shapes.append(each_var.shape)
Y
Yu Yang 已提交
250 251 252 253

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
254
        """
C
chengduoZH 已提交
255 256
        According to feed_list and iterable, converters the input into
        a data structure that can feed into Executor and ParallelExecutor.
C
chengduoZH 已提交
257 258 259 260 261 262

        Args:
            iterable(list|tuple): the input data.

        Returns:
            dict: the result of conversion.
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

        Examples:
            ..  code-block:: python

                import numpy.random as random
                import paddle.fluid as fluid
                
                def reader(limit=5):
                    for i in range(limit):
                        yield random.random([784]).astype('float32'), random.random([1]).astype('int64'), random.random([256]).astype('float32')
                
                data_1 = fluid.layers.data(name='data_1', shape=[1, 28, 28])
                data_2 = fluid.layers.data(name='data_2', shape=[1], dtype='int64')
                data_3 = fluid.layers.data(name='data_3', shape=[16, 16], dtype='float32')
                feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace())
                
                result = feeder.feed(reader()) 
C
chengduoZH 已提交
280
        """
Y
Yu Yang 已提交
281
        converter = []
282
        for lod_level, shape, dtype in six.moves.zip(
Y
Yu Yang 已提交
283 284 285 286 287 288 289 290 291
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
292
            assert len(each_sample) == len(converter), (
293 294
                "The number of fields in data (%d) does not match " +
                "len(feed_list) (%d)") % (len(each_sample), len(converter))
295 296
            for each_converter, each_slot in six.moves.zip(converter,
                                                           each_sample):
Y
Yu Yang 已提交
297 298
                each_converter.feed(each_slot)
        ret_dict = {}
299 300
        for each_name, each_converter in six.moves.zip(self.feed_names,
                                                       converter):
Y
Yu Yang 已提交
301 302
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
303 304

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
305 306
        """
        Takes multiple mini-batches. Each mini-batch will be feed on each
C
chengduoZH 已提交
307
        device in advance.
C
chengduoZH 已提交
308 309 310

        Args:
            iterable(list|tuple): the input data.
C
chengduoZH 已提交
311
            num_places(int): the number of devices. Default None.
C
chengduoZH 已提交
312 313 314 315 316 317

        Returns:
            dict: the result of conversion.

        Notes:
            The number of devices and number of mini-batches must be same.
318 319 320 321 322 323 324 325 326

        Examples:
            ..  code-block:: python

                import numpy.random as random
                import paddle.fluid as fluid
                
                def reader(limit=10):
                    for i in range(limit):
327
                        yield [random.random([784]).astype('float32'), random.random([1]).astype('float32')],
328 329
                
                x = fluid.layers.data(name='x', shape=[1, 28, 28])
330 331 332
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                
                fluid.layers.elementwise_add(x, y)
333 334
                
                feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace())
335
                place_num = 2 
336 337 338 339 340 341 342 343 344 345
                places = [fluid.CPUPlace() for x in range(place_num)]
                data = []
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(fluid.default_startup_program())
                program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places)
                for item in reader():
                    data.append(item)
                    if place_num == len(data):
                        exe.run(program=program, feed=list(feeder.feed_parallel(data, place_num)), fetch_list=[])
                        data = []
C
chengduoZH 已提交
346
        """
Y
yuyang18 已提交
347 348 349
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
350 351
                for i in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
352 353 354 355
            ]
        else:
            places = [
                core.CPUPlace()
356 357
                for _ in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
358 359 360 361 362 363 364 365 366
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
367
        for p, batch in six.moves.zip(places, iterable):
Y
yuyang18 已提交
368 369 370 371 372 373 374 375
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
C
chengduo 已提交
376
            return len(_cuda_ids())
Y
yuyang18 已提交
377
        else:
C
chengduo 已提交
378
            return _cpu_num()
Y
yuyang18 已提交
379 380 381 382 383 384

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
385 386 387 388 389
        """
        Converter the input data into a data that returned by reader into
        multiple mini-batches. Each mini-batch will be feed on each device.

        Args:
C
chengduo 已提交
390 391
            reader(function): the reader is the function which can generate data.
            multi_devices(bool): whether to use multiple devices or not.
Z
Zeng Jinle 已提交
392 393
            num_places(int): if multi_devices is True, you can specify the number
                of GPU to use, if multi_devices is None, the function will use all the
C
chengduo 已提交
394 395 396
                GPU of the current machine. Default None.
            drop_last(bool): whether to drop the last batch if the
                size of the last batch is less than batch_size. Default True.
C
chengduoZH 已提交
397 398 399 400 401

        Returns:
            dict: the result of conversion.

        Raises:
Z
Zeng Jinle 已提交
402
            ValueError: If drop_last is False and the data batch cannot fit for devices.
403 404 405 406 407 408 409

        Examples:
            ..  code-block:: python

                import numpy.random as random
                import paddle
                import paddle.fluid as fluid
410
                import paddle.fluid.compiler as compiler
411
                
412
                def reader(limit=10):
413 414 415
                    for i in range(limit):
                        yield (random.random([784]).astype('float32'), random.random([1]).astype('int64')),
                
416
                place=fluid.CUDAPlace(0)
417 418 419
                data = fluid.layers.data(name='data', shape=[1, 28, 28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int64')
                
420 421
                hidden = fluid.layers.fc(input=data, size=10)
                
422
                feeder = fluid.DataFeeder(place=place, feed_list=[data, label])
423
                reader = feeder.decorate_reader(reader, multi_devices=True)
424 425 426
                
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
427 428 429 430 431
                compiled_prog = compiler.CompiledProgram(
                         fluid.default_main_program()).with_data_parallel()
                for i,data in enumerate(reader()):
                    print('iteration : ', i + 1)
                    ret = exe.run(compiled_prog, feed=data, fetch_list=[hidden])
C
chengduoZH 已提交
432 433
        """

Y
yuyang18 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512


class NumpyToLoDTensorConverter(object):
    def __init__(self, place):
        self.place = place
        self.data = []
        self._reset()

    def _reset(self):
        self.data = []

    def feed(self, data):
        self.data.append(data)

    def done(self):
        arr = numpy.array(self.data)
        t = core.LoDTensor()
        t.set(arr, self.place)
        self._reset()
        return t


class ListTensorProvider(object):
    def __init__(self, generator, places):
        self.generator = generator
        self.converters = []
        self.places = []
        if places:
            if not isinstance(places, (list, tuple)):
                places = [places]
            assert len(
                places) == 1, "dygraph mode CAN NOT specify multiple places."
            for place in places:
                if isinstance(place, (core.CUDAPlace, core.CPUPlace)):
                    self.places.append(place)
                else:
                    raise ValueError(
                        "Please specify a valid place values such as core.CPUPlace or core.CUDAPlace"
                    )
        if len(self.places) == 0:
            self.places.append(_current_expected_place())

    def _readData(self, iterable, places):
        for place, each_sample in six.moves.zip(places, iterable):
            for item in each_sample:
                if len(self.converters) < len(item):
                    for i in item:
                        self.converters.append(NumpyToLoDTensorConverter(place))
                for each_converter, each_slot in six.moves.zip(self.converters,
                                                               item):
                    each_converter.feed(each_slot)
            yield [c.done() for c in self.converters]

    def __call__(self):
        item = []
        for batch in self.generator():
            item.append(batch)
            if len(item) == len(self.places):
                yield list(self._readData(item, self.places))
                item = []