gan_trainer.py 12.1 KB
Newer Older
X
xuwei06 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import random
import numpy
W
wangyang59 已提交
18 19 20
import cPickle
import sys,os
from PIL import Image
X
xuwei06 已提交
21 22 23 24

from paddle.trainer.config_parser import parse_config
from paddle.trainer.config_parser import logger
import py_paddle.swig_paddle as api
25 26 27
import matplotlib.pyplot as plt

def plot2DScatter(data, outputfile):
W
wangyang59 已提交
28 29 30 31
    '''
    Plot the data as a 2D scatter plot and save to outputfile
    data needs to be two dimensinoal
    '''
32 33 34 35 36 37 38 39 40 41 42
    x = data[:, 0]
    y = data[:, 1]
    print "The mean vector is %s" % numpy.mean(data, 0)
    print "The std vector is %s" % numpy.std(data, 0)

    heatmap, xedges, yedges = numpy.histogram2d(x, y, bins=50)
    extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]

    plt.clf()
    plt.scatter(x, y)
    plt.savefig(outputfile, bbox_inches='tight')
X
xuwei06 已提交
43 44 45 46 47

def CHECK_EQ(a, b):
    assert a == b, "a=%s, b=%s" % (a, b)

def copy_shared_parameters(src, dst):
W
wangyang59 已提交
48 49 50 51 52 53 54
    '''
    copy the parameters from src to dst
    :param src: the source of the parameters
    :type src: GradientMachine
    :param dst: the destination of the parameters
    :type dst: GradientMachine
    '''
X
xuwei06 已提交
55 56 57 58
    src_params = [src.getParameter(i)
               for i in xrange(src.getParameterSize())]
    src_params = dict([(p.getName(), p) for p in src_params])

59

X
xuwei06 已提交
60 61 62 63 64 65 66 67 68 69
    for i in xrange(dst.getParameterSize()):
        dst_param = dst.getParameter(i)
        src_param = src_params.get(dst_param.getName(), None)
        if src_param is None:
            continue
        src_value = src_param.getBuf(api.PARAMETER_VALUE)
        dst_value = dst_param.getBuf(api.PARAMETER_VALUE)
        CHECK_EQ(len(src_value), len(dst_value))
        dst_value.copyFrom(src_value)
        dst_param.setValueUpdated()
70 71 72 73
        
def print_parameters(src):
    src_params = [src.getParameter(i)
               for i in xrange(src.getParameterSize())]
X
xuwei06 已提交
74

75 76 77 78
    print "***************"
    for p in src_params:
        print "Name is %s" % p.getName()
        print "value is %s \n" % p.getBuf(api.PARAMETER_VALUE).copyToNumpyArray()
X
xuwei06 已提交
79

W
wangyang59 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
def load_mnist_data(imageFile):
    f = open(imageFile, "rb")
    f.read(16)

    # Define number of samples for train/test
    if "train" in imageFile:
        n = 60000
    else:
        n = 10000
    
    data = numpy.zeros((n, 28*28), dtype = "float32")
    
    for i in range(n):
        pixels = []
        for j in range(28 * 28):
            pixels.append(float(ord(f.read(1))) / 255.0 * 2.0 - 1.0)
        data[i, :] = pixels

    f.close()
    return data

def load_cifar_data(cifar_path):
    batch_size = 10000
    data = numpy.zeros((5*batch_size, 32*32*3), dtype = "float32")
    for i in range(1, 6):
        file = cifar_path + "/data_batch_" + str(i)
        fo = open(file, 'rb')
        dict = cPickle.load(fo)
        fo.close()
        data[(i - 1)*batch_size:(i*batch_size), :] = dict["data"]
    
    data = data / 255.0 * 2.0 - 1.0
    return data

# synthesize 2-D uniform data
def load_uniform_data():
    data = numpy.random.rand(1000000, 2).astype('float32')
    return data

def merge(images, size):
    if images.shape[1] == 28*28:
        h, w, c = 28, 28, 1
    else:
        h, w, c = 32, 32, 3
    img = numpy.zeros((h * size[0], w * size[1], c))
    for idx in xrange(size[0] * size[1]):
        i = idx % size[1]
        j = idx // size[1]
        img[j*h:j*h+h, i*w:i*w+w, :] = \
          ((images[idx, :].reshape((h, w, c), order="F").transpose(1, 0, 2) + 1.0) / 2.0 * 255.0)
    return img.astype('uint8')

def saveImages(images, path):
    merged_img = merge(images, [8, 8])
    if merged_img.shape[2] == 1:
        im = Image.fromarray(numpy.squeeze(merged_img)).convert('RGB')
    else:
        im = Image.fromarray(merged_img, mode="RGB")
    im.save(path)
    
def get_real_samples(batch_size, data_np):
    return data_np[numpy.random.choice(data_np.shape[0], batch_size, 
                                       replace=False),:]
    
def get_noise(batch_size, noise_dim):
    return numpy.random.normal(size=(batch_size, noise_dim)).astype('float32')

def get_fake_samples(generator_machine, batch_size, noise):
    gen_inputs = api.Arguments.createArguments(1)
    gen_inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise))
X
xuwei06 已提交
150 151 152
    gen_outputs = api.Arguments.createArguments(0)
    generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST)
    fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat()
153 154 155 156 157 158 159 160
    return fake_samples

def get_training_loss(training_machine, inputs):
    outputs = api.Arguments.createArguments(0)
    training_machine.forward(inputs, outputs, api.PASS_TEST)
    loss = outputs.getSlotValue(0).copyToNumpyMat()
    return numpy.mean(loss)

W
wangyang59 已提交
161 162
def prepare_discriminator_data_batch_pos(batch_size, data_np):
    real_samples = get_real_samples(batch_size, data_np)
163 164
    labels = numpy.ones(batch_size, dtype='int32')
    inputs = api.Arguments.createArguments(2)
W
wangyang59 已提交
165 166
    inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(real_samples))
    inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(labels))
167 168
    return inputs

W
wangyang59 已提交
169 170
def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise):
    fake_samples = get_fake_samples(generator_machine, batch_size, noise)
171 172
    labels = numpy.zeros(batch_size, dtype='int32')
    inputs = api.Arguments.createArguments(2)
W
wangyang59 已提交
173 174
    inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(fake_samples))
    inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(labels))
175
    return inputs
X
xuwei06 已提交
176

W
wangyang59 已提交
177
def prepare_generator_data_batch(batch_size, noise):
X
xuwei06 已提交
178 179
    label = numpy.ones(batch_size, dtype='int32')
    inputs = api.Arguments.createArguments(2)
W
wangyang59 已提交
180 181
    inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise))
    inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(label))
X
xuwei06 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    return inputs


def find(iterable, cond):
    for item in iterable:
        if cond(item):
            return item
    return None


def get_layer_size(model_conf, layer_name):
    layer_conf = find(model_conf.layers, lambda x: x.name == layer_name)
    assert layer_conf is not None, "Cannot find '%s' layer" % layer_name
    return layer_conf.size


def main():
W
wangyang59 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    parser = argparse.ArgumentParser()
    parser.add_argument("-d", "--dataSource", help="mnist or cifar or uniform")
    parser.add_argument("--useGpu", default="1", 
                        help="1 means use gpu for training")
    parser.add_argument("--gpuId", default="0", 
                        help="the gpu_id parameter")
    args = parser.parse_args()
    dataSource = args.dataSource
    useGpu = args.useGpu
    assert dataSource in ["mnist", "cifar", "uniform"]
    assert useGpu in ["0", "1"]
            
    api.initPaddle('--use_gpu=' + useGpu, '--dot_period=10', '--log_period=100', 
                   '--gpu_id=' + args.gpuId)
    
    if dataSource == "uniform":
        conf = "gan_conf.py"
        num_iter = 10000
    else:
        conf = "gan_conf_image.py"
        num_iter = 1000
        
    gen_conf = parse_config(conf, "mode=generator_training,data=" + dataSource)
    dis_conf = parse_config(conf, "mode=discriminator_training,data=" + dataSource)
    generator_conf = parse_config(conf, "mode=generator,data=" + dataSource)
X
xuwei06 已提交
224 225
    batch_size = dis_conf.opt_config.batch_size
    noise_dim = get_layer_size(gen_conf.model_config, "noise")
W
wangyang59 已提交
226 227 228 229 230 231 232 233 234 235 236
    
    if dataSource == "mnist":
        data_np = load_mnist_data("./data/mnist_data/train-images-idx3-ubyte")
    elif dataSource == "cifar":
        data_np = load_cifar_data("./data/cifar-10-batches-py/")
    else:
        data_np = load_uniform_data()
    
    if not os.path.exists("./%s_samples/" % dataSource):
        os.makedirs("./%s_samples/" % dataSource)
    
X
xuwei06 已提交
237 238 239
    # this create a gradient machine for discriminator
    dis_training_machine = api.GradientMachine.createFromConfigProto(
        dis_conf.model_config)
W
wangyang59 已提交
240
    # this create a gradient machine for generator    
X
xuwei06 已提交
241 242 243 244 245 246 247 248
    gen_training_machine = api.GradientMachine.createFromConfigProto(
        gen_conf.model_config)

    # generator_machine is used to generate data only, which is used for
    # training discrinator
    logger.info(str(generator_conf.model_config))
    generator_machine = api.GradientMachine.createFromConfigProto(
        generator_conf.model_config)
W
wangyang59 已提交
249
    
X
xuwei06 已提交
250 251 252 253 254
    dis_trainer = api.Trainer.create(
        dis_conf, dis_training_machine)

    gen_trainer = api.Trainer.create(
        gen_conf, gen_training_machine)
W
wangyang59 已提交
255
    
X
xuwei06 已提交
256 257
    dis_trainer.startTrain()
    gen_trainer.startTrain()
W
wangyang59 已提交
258 259
    
    # Sync parameters between networks (GradientMachine) at the beginning
260 261
    copy_shared_parameters(gen_training_machine, dis_training_machine)
    copy_shared_parameters(gen_training_machine, generator_machine)
W
wangyang59 已提交
262 263 264
    
    # constrain that either discriminator or generator can not be trained
    # consecutively more than MAX_strike times
265 266 267
    curr_train = "dis"
    curr_strike = 0
    MAX_strike = 5
W
wangyang59 已提交
268
     
269
    for train_pass in xrange(100):
X
xuwei06 已提交
270 271
        dis_trainer.startTrainPass()
        gen_trainer.startTrainPass()
W
wangyang59 已提交
272 273 274
        for i in xrange(num_iter):
            # Do forward pass in discriminator to get the dis_loss
            noise = get_noise(batch_size, noise_dim)
275
            data_batch_dis_pos = prepare_discriminator_data_batch_pos(
W
wangyang59 已提交
276
                batch_size, data_np)
277 278 279
            dis_loss_pos = get_training_loss(dis_training_machine, data_batch_dis_pos)
            
            data_batch_dis_neg = prepare_discriminator_data_batch_neg(
W
wangyang59 已提交
280
                generator_machine, batch_size, noise)
281
            dis_loss_neg = get_training_loss(dis_training_machine, data_batch_dis_neg)            
W
wangyang59 已提交
282
                         
283 284
            dis_loss = (dis_loss_pos + dis_loss_neg) / 2.0
            
W
wangyang59 已提交
285
            # Do forward pass in generator to get the gen_loss
286
            data_batch_gen = prepare_generator_data_batch(
W
wangyang59 已提交
287
                    batch_size, noise)
288
            gen_loss = get_training_loss(gen_training_machine, data_batch_gen)
W
wangyang59 已提交
289 290 291
             
            if i % 100 == 0:
                print "d_pos_loss is %s     d_neg_loss is %s" % (dis_loss_pos, dis_loss_neg) 
292
                print "d_loss is %s    g_loss is %s" % (dis_loss, gen_loss)
W
wangyang59 已提交
293 294 295 296 297
            
            # Decide which network to train based on the training history
            # And the relative size of the loss        
            if (not (curr_train == "dis" and curr_strike == MAX_strike)) and \
               ((curr_train == "gen" and curr_strike == MAX_strike) or dis_loss > gen_loss):
298 299 300 301 302 303
                if curr_train == "dis":
                    curr_strike += 1
                else:
                    curr_train = "dis"
                    curr_strike = 1                
                dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_neg)
W
wangyang59 已提交
304
                dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_pos)               
305
                copy_shared_parameters(dis_training_machine, gen_training_machine)
W
wangyang59 已提交
306
 
307 308 309 310 311 312 313 314 315
            else:
                if curr_train == "gen":
                    curr_strike += 1
                else:
                    curr_train = "gen"
                    curr_strike = 1
                gen_trainer.trainOneDataBatch(batch_size, data_batch_gen)    
                copy_shared_parameters(gen_training_machine, dis_training_machine)
                copy_shared_parameters(gen_training_machine, generator_machine)
W
wangyang59 已提交
316
 
X
xuwei06 已提交
317 318
        dis_trainer.finishTrainPass()
        gen_trainer.finishTrainPass()
W
wangyang59 已提交
319 320 321 322 323 324
        # At the end of each pass, save the generated samples/images
        fake_samples = get_fake_samples(generator_machine, batch_size, noise)
        if dataSource == "uniform":
            plot2DScatter(fake_samples, "./%s_samples/train_pass%s.png" % (dataSource, train_pass))
        else:
            saveImages(fake_samples, "./%s_samples/train_pass%s.png" % (dataSource, train_pass))
X
xuwei06 已提交
325 326 327 328 329
    dis_trainer.finishTrain()
    gen_trainer.finishTrain()

if __name__ == '__main__':
    main()