learning_rate_scheduler.py 11.2 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
yuyang18 已提交
14 15 16 17 18 19 20 21
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""
Q
Qiao Longfei 已提交
22

23 24
from __future__ import print_function

25 26 27 28
from . import control_flow
from . import nn
from . import ops
from . import tensor
29
from ..initializer import init_on_cpu
W
Wu Yi 已提交
30
from ..framework import default_main_program, Parameter
Q
Qiao Longfei 已提交
31

32 33
__all__ = [
    'exponential_decay', 'natural_exp_decay', 'inverse_time_decay',
W
Wu Yi 已提交
34
    'polynomial_decay', 'piecewise_decay', 'noam_decay', 'append_LARS'
35
]
Q
Qiao Longfei 已提交
36 37


38
def _decay_step_counter(begin=0):
Y
Yu Yang 已提交
39
    # the first global step is zero in learning rate decay
40
    global_step = nn.autoincreased_step_counter(
41
        counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
42
    global_step = tensor.cast(global_step, 'float32')
Y
Yu Yang 已提交
43 44 45
    return global_step


46
def noam_decay(d_model, warmup_steps):
Y
yuyang18 已提交
47 48 49 50 51 52 53 54 55 56
    """
    Noam decay method. The numpy implementation of noam decay as follows.

    >>> import numpy as np
    >>> lr_value = np.power(d_model, -0.5) * np.min([
    >>>                         np.power(current_steps, -0.5),
    >>>                         np.power(warmup_steps, -1.5) * current_steps])

    Please reference `attention is all you need
    <https://arxiv.org/pdf/1706.03762.pdf>`_.
57 58 59

    Args:
        d_model(Variable): The dimensionality of input and output of model.
Y
yuyang18 已提交
60

61 62 63 64 65 66
        warmup_steps(Variable): A super parameter.

    Returns:
        The decayed learning rate.
    """
    global_step = _decay_step_counter(1)
F
fengjiayi 已提交
67 68 69 70

    a = global_step**-0.5
    b = (warmup_steps**-1.5) * global_step
    lr_value = (d_model**-0.5) * ops.elementwise_min(a, b)
71 72 73 74

    return lr_value


Y
Yu Yang 已提交
75
def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
76
    """
77
    Applies exponential decay to the learning rate.
F
fengjiayi 已提交
78

79 80
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, the learning rate will be decayed by
F
fengjiayi 已提交
81 82 83 84 85 86
    'decay_rate' every 'decay_steps' steps.

    >>> if staircase == True:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
    >>> else:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
Q
Qiao Longfei 已提交
87 88

    Args:
F
fengjiayi 已提交
89 90 91 92 93
        learning_rate(Variable|float): The initial learning rate.
        decay_steps(int): See the decay computation above.
        decay_rate(float): The decay rate. See the decay computation above.
        staircase(Boolean): If True, decay the learning rate at discrete intervals.
                            Default: False
Q
Qiao Longfei 已提交
94 95

    Returns:
F
fengjiayi 已提交
96
        Variable: The decayed learning rate
F
fengjiayi 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109

    Examples:
        .. code-block:: python

          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=fluid.layers.exponential_decay(
                    learning_rate=base_lr,
                    decay_steps=10000,
                    decay_rate=0.5,
                    staircase=True))
          sgd_optimizer.minimize(avg_cost)

Q
Qiao Longfei 已提交
110
    """
Y
Yu Yang 已提交
111
    global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
112

F
fengjiayi 已提交
113 114 115 116
    div_res = global_step / decay_steps
    if staircase:
        div_res = ops.floor(div_res)
    decayed_lr = learning_rate * (decay_rate**div_res)
117 118

    return decayed_lr
Q
Qiao Longfei 已提交
119 120


Y
Yu Yang 已提交
121
def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Q
Qiao Longfei 已提交
122 123
    """Applies natural exponential decay to the initial learning rate.

Y
Yu Yang 已提交
124 125 126 127 128
    >>> if not staircase:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
    >>> else:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))

Q
Qiao Longfei 已提交
129 130 131 132 133 134 135 136 137 138
    Args:
        learning_rate: A scalar float32 value or a Variable. This
          will be the initial learning rate during training
        decay_steps: A Python `int32` number.
        decay_rate: A Python `float` number.
        staircase: Boolean. If set true, decay the learning rate every decay_steps.

    Returns:
        The decayed learning rate
    """
Y
Yu Yang 已提交
139
    global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
140

F
fengjiayi 已提交
141 142 143 144
    div_res = global_step / decay_steps
    if staircase:
        div_res = ops.floor(div_res)
    decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res)
145 146

    return decayed_lr
Q
Qiao Longfei 已提交
147 148


Y
Yu Yang 已提交
149
def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
150 151
    """
    Applies inverse time decay to the initial learning rate.
Q
Qiao Longfei 已提交
152

153 154
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, an inverse decay function will be
F
fengjiayi 已提交
155
    applied to the initial learning rate.
Q
Qiao Longfei 已提交
156

F
fengjiayi 已提交
157
    >>> if staircase == True:
Y
Yu Yang 已提交
158 159 160 161
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
    >>> else:
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)

Q
Qiao Longfei 已提交
162
    Args:
F
fengjiayi 已提交
163 164 165 166 167
        learning_rate(Variable|float): The initial learning rate.
        decay_steps(int): See the decay computation above.
        decay_rate(float): The decay rate. See the decay computation above.
        staircase(Boolean): If True, decay the learning rate at discrete intervals.
                            Default: False
Q
Qiao Longfei 已提交
168 169

    Returns:
F
fengjiayi 已提交
170
        Variable: The decayed learning rate
F
fengjiayi 已提交
171 172 173 174 175 176 177 178 179 180 181 182

    Examples:
        .. code-block:: python

          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=fluid.layers.inverse_time_decay(
                    learning_rate=base_lr,
                    decay_steps=10000,
                    decay_rate=0.5,
                    staircase=True))
          sgd_optimizer.minimize(avg_cost)
Q
Qiao Longfei 已提交
183
    """
Y
Yu Yang 已提交
184
    global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
185

F
fengjiayi 已提交
186 187 188
    div_res = global_step / decay_steps
    if staircase:
        div_res = ops.floor(div_res)
189

F
fengjiayi 已提交
190
    decayed_lr = learning_rate / (1 + decay_rate * div_res)
Q
Qiao Longfei 已提交
191

192
    return decayed_lr
193 194 195 196 197 198 199


def polynomial_decay(learning_rate,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
Q
qiaolongfei 已提交
200 201 202
    """
    Applies polynomial decay to the initial learning rate.

Q
qiaolongfei 已提交
203
    .. code-block:: python
Q
qiaolongfei 已提交
204 205 206 207 208 209 210

     if cycle:
       decay_steps = decay_steps * ceil(global_step / decay_steps)
     else:
       global_step = min(global_step, decay_steps)
       decayed_learning_rate = (learning_rate - end_learning_rate) *
            (1 - global_step / decay_steps) ^ power + end_learning_rate
211 212

    Args:
Q
qiaolongfei 已提交
213
        learning_rate(Variable|float32): A scalar float32 value or a Variable. This
Q
update  
qiaolongfei 已提交
214
          will be the initial learning rate during training.
Q
qiaolongfei 已提交
215
        decay_steps(int32): A Python `int32` number.
Q
update  
qiaolongfei 已提交
216 217 218
        end_learning_rate(float): A Python `float` number.
        power(float): A Python `float` number.
        cycle(bool): If set true, decay the learning rate every decay_steps.
219 220

    Returns:
Q
update  
qiaolongfei 已提交
221
        Variable: The decayed learning rate
222
    """
Y
Yu Yang 已提交
223
    global_step = _decay_step_counter()
224

F
fengjiayi 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    if cycle:
        div_res = ops.ceil(global_step / decay_steps)
        zero_var = tensor.fill_constant(shape=[1], dtype='float32', value=0.0)
        one_var = tensor.fill_constant(shape=[1], dtype='float32', value=1.0)

        with control_flow.Switch() as switch:
            with switch.case(global_step == zero_var):
                tensor.assign(input=one_var, output=div_res)
        decay_steps = decay_steps * div_res
    else:
        decay_steps_var = tensor.fill_constant(
            shape=[1], dtype='float32', value=float(decay_steps))
        global_step = ops.elementwise_min(x=global_step, y=decay_steps_var)

    decayed_lr = (learning_rate - end_learning_rate) * \
        ((1 - global_step / decay_steps) ** power) + end_learning_rate
241
    return decayed_lr
242 243


Y
Yu Yang 已提交
244
def piecewise_decay(boundaries, values):
245 246
    """Applies piecewise decay to the initial learning rate.

X
Xin Pan 已提交
247 248 249 250 251 252 253 254 255 256 257 258
      The algorithm can be described as the code below.

      .. code-block:: python

        boundaries = [10000, 20000]
        values = [1.0, 0.5, 0.1]
        if step < 10000:
            learning_rate = 1.0
        elif 10000 <= step < 20000:
            learning_rate = 0.5
        else:
            learning_rate = 0.1
X
Xin Pan 已提交
259 260 261 262 263 264 265 266
    Args:
        boundaries: A list of steps numbers.
        values: A list of learning rate values that will be picked during
            different step boundaries.

    Returns:
        The decayed learning rate.

X
Xin Pan 已提交
267

268 269 270 271 272
    """

    if len(values) - len(boundaries) != 1:
        raise ValueError("len(values) - len(boundaries) should be 1")

Y
Yu Yang 已提交
273
    global_step = _decay_step_counter()
274

275 276 277 278 279 280 281 282 283 284
    lr = tensor.create_global_var(
        shape=[1],
        value=0.0,
        dtype='float32',
        persistable=True,
        name="learning_rate")

    with control_flow.Switch() as switch:
        for i in range(len(boundaries)):
            boundary_val = tensor.fill_constant(
285 286
                shape=[1],
                dtype='float32',
287 288 289 290 291 292 293 294 295 296
                value=float(boundaries[i]),
                force_cpu=True)
            value_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=float(values[i]))
            with switch.case(global_step < boundary_val):
                tensor.assign(value_var, lr)
        last_value_var = tensor.fill_constant(
            shape=[1], dtype='float32', value=float(values[len(values) - 1]))
        with switch.default():
            tensor.assign(last_value_var, lr)
297 298

    return lr
W
Wu Yi 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330


def append_LARS(params_grads, learning_rate, weight_decay):
    """Applies LARS (LAYER-WISE ADAPTIVE RATE SCALING) to learning rate for
       each layer.

    ```python
        learning_rate *= local_gw_ratio * sqrt(sumsq(param))
                        / (sqrt(sumsq(gradient))+ weight_decay * sqrt(sumsq(param)))
    ```

    Args:
        learning_rate: A learning rate Variable. This
          is the global learning rate for LARS.
        weight_decay: A Python `float` number.

    Returns:
        The decayed learning rate
    """

    def _balanced_weight(param_norm, grad_norm):
        if weight_decay == 1.0:
            return grad_norm + param_norm
        else:
            return grad_norm + weight_decay * param_norm

    for param, grad in params_grads:
        param_lr = param.optimize_attr['learning_rate']
        param_norm = ops.sqrt(nn.reduce_sum(input=ops.square(param)))
        grad_norm = ops.sqrt(nn.reduce_sum(input=ops.square(grad)))
        if type(param_lr) == float and param_lr == 1.0:
            decayed_lr = learning_rate * param_norm \
331
                / _balanced_weight(param_norm, grad_norm)
W
Wu Yi 已提交
332 333
        else:
            decayed_lr = learning_rate * param_lr * param_norm \
334
                / _balanced_weight(param_norm, grad_norm)
W
Wu Yi 已提交
335 336
        # set back param local learning rate
        param.optimize_attr['learning_rate'] = decayed_lr