parameter_recv.cc 9.1 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

W
wanghuancoder 已提交
15
#include <sys/types.h>
16
#include <algorithm>
Q
Qiao Longfei 已提交
17
#include <memory>
Q
Qiao Longfei 已提交
18

W
wanghuancoder 已提交
19 20
#include "glog/logging.h"
#include "paddle/fluid/framework/ddim.h"
Q
Qiao Longfei 已提交
21 22 23
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
W
wanghuancoder 已提交
24
#include "paddle/fluid/operators/distributed/communicator_common.h"
Q
Qiao Longfei 已提交
25
#include "paddle/fluid/operators/distributed/distributed.h"
W
wanghuancoder 已提交
26 27 28 29
#include "paddle/fluid/operators/distributed/parameter_recv.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
Q
Qiao Longfei 已提交
30 31 32 33 34

namespace paddle {
namespace operators {
namespace distributed {

W
wanghuancoder 已提交
35 36
class RPCClient;

Q
Qiao Longfei 已提交
37 38 39 40 41 42
using LoDTensor = framework::LoDTensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

template <typename T>
T
tangwei12 已提交
43 44 45 46 47 48 49 50 51 52 53 54
void RecvSparseLodTensor(const CommContext &rpc_ctx,
                         const framework::Scope &scope) {
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto cpu_place = platform::CPUPlace();
  auto &cpu_ctx = *pool.Get(cpu_place);

  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(rpc_ctx.trainer_id);

  std::unique_ptr<framework::Scope> local_scope = scope.NewTmpScope();
  std::vector<const float *> tensors;
  std::vector<distributed::VarHandlePtr> rets;
55
  std::vector<std::string> recv_varnames;
T
tangwei12 已提交
56 57 58
  for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) {
    auto &recv_var_name = rpc_ctx.splited_varnames[i];
    VLOG(4) << "recv " << recv_var_name << " from " << rpc_ctx.epmap[i];
59
    local_scope->Var(recv_var_name);
T
tangwei12 已提交
60 61 62 63
    // sparse param in recv_scope is LoDTensor
    rets.push_back(rpc_client->AsyncGetVarNoBarrier(
        rpc_ctx.epmap[i], cpu_ctx, *local_scope.get(), recv_var_name,
        recv_var_name));
64
    recv_varnames.push_back(recv_var_name);
T
tangwei12 已提交
65 66 67 68 69
  }

  for (size_t i = 0; i < rets.size(); i++) {
    PADDLE_ENFORCE_NE(rets[i]->Wait(), 0U, platform::errors::ExecutionTimeout(
                                               "internal error in RPCClient"));
70 71 72 73
    auto &recv_var_name = recv_varnames[i];
    auto *local_var = local_scope->FindVar(recv_var_name);
    const auto *value = local_var->Get<framework::LoDTensor>().data<float>();
    tensors.push_back(value);
T
tangwei12 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
  }

  auto *merged_var = scope.FindVar(rpc_ctx.var_name);

  if (merged_var == nullptr || !merged_var->IsInitialized()) {
    PADDLE_THROW(
        platform::errors::InvalidArgument("%s must initialized at first."));
  }
  auto dims1 = merged_var->Get<framework::LoDTensor>().dims()[1];
  int64_t height = 0;
  for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) {
    auto *splited_var = local_scope->FindVar(rpc_ctx.splited_varnames[i]);
    height += splited_var->Get<framework::LoDTensor>().dims()[0];
  }

89 90 91 92
  PADDLE_ENFORCE_EQ(
      merged_var->Get<framework::LoDTensor>().dims()[0], height,
      platform::errors::InvalidArgument(
          "Received variable must has same dimension with local variable."));
T
tangwei12 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

  auto *merged_t = merged_var->GetMutable<framework::LoDTensor>();
  auto *merged_d = merged_t->mutable_data<float>(cpu_place);

  auto pserver_num = rpc_ctx.splited_varnames.size();
  for (int x = 0; x < height; ++x) {
    auto id = x % pserver_num;
    auto idx = x / pserver_num;
    std::memcpy(merged_d + x * dims1, tensors[id] + idx * dims1,
                sizeof(float) * dims1);
  }
}

template <typename T>
void RecvGeoSparseRecords(const CommContext &rpc_ctx,
                          const framework::Scope &scope) {
109 110 111 112 113 114 115
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto cpu_place = platform::CPUPlace();
  auto &cpu_ctx = *pool.Get(cpu_place);

  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(rpc_ctx.trainer_id);

116
  std::unique_ptr<framework::Scope> local_scope = scope.NewTmpScope();
Q
Qiao Longfei 已提交
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
  std::vector<distributed::VarHandlePtr> rets;
  for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) {
    auto &recv_var_name = rpc_ctx.splited_varnames[i];
    local_scope->Var(recv_var_name);
    VLOG(4) << "recv " << recv_var_name << " from " << rpc_ctx.epmap[i];
    // sparse param in recv_scope is LoDTensor
    rets.push_back(rpc_client->AsyncGetVar(rpc_ctx.epmap[i], cpu_ctx,
                                           *local_scope.get(), recv_var_name,
                                           recv_var_name, recv_var_name));
  }

  for (size_t i = 0; i < rets.size(); i++) {
    PADDLE_ENFORCE_NE(rets[i]->Wait(), 0U, platform::errors::ExecutionTimeout(
                                               "internal error in RPCClient"));
  }

  int64_t height = 0;
  int64_t ids_num = 0;
  int64_t width = 0;

  std::vector<int64_t> all_ids;
  auto pserver_num = rpc_ctx.splited_varnames.size();

  for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) {
    auto &recv_var_name = rpc_ctx.splited_varnames[i];
    auto *recv_var = local_scope->FindVar(recv_var_name);
    auto &recv_t = recv_var->Get<framework::SelectedRows>();

    height += recv_t.height();
    ids_num += recv_t.rows().size();
    width = recv_t.value().dims()[1];

T
tangwei12 已提交
150 151 152 153 154 155 156 157
    if (rpc_ctx.is_distributed) {
      std::copy(recv_t.rows().begin(), recv_t.rows().end(),
                std::back_inserter(all_ids));
    } else {
      std::transform(recv_t.rows().begin(), recv_t.rows().end(),
                     std::back_inserter(all_ids),
                     [&](int64_t id) { return id * pserver_num + i; });
    }
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
  }

  auto *var = scope.FindVar(rpc_ctx.var_name);
  auto *t_ = var->GetMutable<framework::SelectedRows>();
  T *out_data =
      t_->mutable_value()->mutable_data<T>({ids_num, width}, cpu_place);
  t_->set_height(height);
  t_->set_rows(all_ids);

  int64_t cnt = 0;
  for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) {
    auto &recv_var_name = rpc_ctx.splited_varnames[i];
    auto *recv_var = local_scope->FindVar(recv_var_name);
    auto &recv_t = recv_var->Get<framework::SelectedRows>();

    auto rows = recv_t.rows().size();
    const T *in_data = recv_t.value().data<T>();
    std::copy_n(in_data, rows * width, out_data + cnt);
    cnt += rows * width;
  }
  t_->SyncIndex();
}

template <typename T>
void RecvLodTensor(const CommContext &rpc_ctx, const framework::Scope &scope) {
Q
Qiao Longfei 已提交
183
  distributed::RPCClient *rpc_client =
Q
Qiao Longfei 已提交
184
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(rpc_ctx.trainer_id);
Q
Qiao Longfei 已提交
185

186 187 188 189 190 191
  std::vector<distributed::VarHandlePtr> rets;

  // variable do not spilt
  if (rpc_ctx.origin_varnames.size() == 1 &&
      rpc_ctx.splited_varnames.size() == 1) {
    auto varname = rpc_ctx.origin_varnames[0];
C
Chengmo 已提交
192 193 194 195 196 197 198
    const auto place =
        scope.FindVar(varname)->Get<framework::LoDTensor>().place();
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(place);
    VLOG(4) << "recv " << varname << " from " << rpc_ctx.epmap[0] << " in gpu? "
            << platform::is_gpu_place(place);
    rets.push_back(rpc_client->AsyncGetVarNoBarrier(rpc_ctx.epmap[0], ctx,
199 200
                                                    scope, varname, varname));

Q
Qiao Longfei 已提交
201
    for (size_t i = 0; i < rets.size(); i++) {
202 203 204
      PADDLE_ENFORCE_NE(
          rets[i]->Wait(), 0U,
          platform::errors::ExecutionTimeout("internal error in RPCClient"));
Q
Qiao Longfei 已提交
205
    }
206 207 208

    VLOG(3) << "ParameterRecv out " << rpc_ctx.var_name;
    return;
Q
Qiao Longfei 已提交
209
  } else {
210 211 212
    PADDLE_ENFORCE(false, platform::errors::Unimplemented(
                              "ParameterRecv can not recv dense with multi "
                              "parts now, add it soon."));
Q
Qiao Longfei 已提交
213
  }
214
}
Q
Qiao Longfei 已提交
215

216 217
template <typename T>
void ParameterRecv<T>::operator()(const CommContext &rpc_ctx,
T
tangwei12 已提交
218 219
                                  const framework::Scope &scope,
                                  bool geo_records) {
220 221 222 223 224 225 226
  VLOG(3) << "ParameterRecv in " << rpc_ctx.var_name;

  PADDLE_ENFORCE_GE(rpc_ctx.origin_varnames.size(), 1,
                    platform::errors::InvalidArgument(
                        "origin_varnames.size() >= 1 is permitted"));

  if (rpc_ctx.is_sparse) {
T
tangwei12 已提交
227 228 229 230 231
    if (geo_records) {
      RecvGeoSparseRecords<T>(rpc_ctx, scope);
    } else {
      RecvSparseLodTensor<T>(rpc_ctx, scope);
    }
232 233
  } else {
    RecvLodTensor<T>(rpc_ctx, scope);
Q
Qiao Longfei 已提交
234 235
  }

236 237 238 239 240
  VLOG(3) << "ParameterRecv out " << rpc_ctx.var_name;
}
template <typename T>
void ParameterRecv<T>::operator()(const CommContext &rpc_ctx,
                                  const framework::Scope &scope) {
T
tangwei12 已提交
241
  this->operator()(rpc_ctx, scope, false);
Q
Qiao Longfei 已提交
242 243 244 245 246 247 248
}

template struct ParameterRecv<float>;

};  // namespace distributed
};  // namespace operators
};  // namespace paddle