nan_inf_utils_detail.cu 16.7 KB
Newer Older
W
WangXi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16 17
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
#include "paddle/fluid/framework/details/nan_inf_utils.h"

W
WangXi 已提交
18 19 20 21
#include <algorithm>
#include <unordered_map>
#include <utility>
#include <vector>
22

23
#include "paddle/fluid/framework/convert_utils.h"
24
#include "paddle/fluid/framework/scope.h"
25 26 27 28 29
#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/kernels/funcs/math_cuda_utils.h"

DECLARE_bool(abort_on_nan_inf);
DECLARE_bool(check_tensor_max_min);
W
WangXi 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

namespace paddle {
namespace framework {
namespace details {

static std::once_flag init_multi_gpu_op_var_map_flag;

// lazy init
static std::vector<std::unordered_map<std::string, memory::AllocationPtr>>&
multi_op_var2gpu_str() {
  static std::vector<std::unordered_map<std::string, memory::AllocationPtr>>
      _multi_op_var2gpu_str;
  return _multi_op_var2gpu_str;
}

static std::vector<std::mutex>& multi_op_var2gpu_str_mutex() {
  static std::vector<std::mutex> _multi_op_var2gpu_str_mutex;
  return _multi_op_var2gpu_str_mutex;
}

static void InitMultiGPUOpVarMap() {
51
  int dev_count = platform::GetGPUDeviceCount();
52 53
  PADDLE_ENFORCE_GT(dev_count,
                    0,
W
WangXi 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
                    platform::errors::NotFound(
                        "cuda device must > 0, now dev_count=%d", dev_count));

  // https://stackoverflow.com/questions/16465633/how-can-i-use-something-like-stdvectorstdmutex
  std::vector<std::unordered_map<std::string, memory::AllocationPtr>> tmp_multi(
      dev_count);
  std::vector<std::mutex> tmp_multi_mutex(dev_count);

  multi_op_var2gpu_str().swap(tmp_multi);
  multi_op_var2gpu_str_mutex().swap(tmp_multi_mutex);
}

template <typename T>
__device__ __forceinline__ void PrintNanInfKernel(const T* value,
                                                  const size_t numel,
                                                  int print_num,
                                                  char* debug_info) {
  const size_t tid = threadIdx.x + blockIdx.x * blockDim.x;

  __shared__ unsigned int nan_count, inf_count, num_count;
  if (threadIdx.x == 0) nan_count = inf_count = num_count = 0;
  __syncthreads;

  for (size_t i = tid; i < numel; i += blockDim.x * gridDim.x) {
    unsigned int count = 0;
    if (isnan(value[i])) {
      count = atomicAdd(&nan_count, 1);
    } else if (isinf(value[i])) {
      count = atomicAdd(&inf_count, 1);
    } else {
      count = atomicAdd(&num_count, 1);
    }
    // for cuda, print in every block
    if (count < print_num) {
88 89 90 91
      printf("numel:%lu idx:%lu value:%f\n",
             static_cast<uint64_t>(numel),
             static_cast<uint64_t>(i),
             static_cast<float>(value[i]));
W
WangXi 已提交
92 93 94 95
    }
  }
  __syncthreads;

96
#ifdef __HIPCC__
97
  if (true && hipThreadIdx_x == 0) {
98 99 100 101 102
    printf("In block %d, there has %u,%u,%u nan,inf,num\n",
           hipBlockIdx_x,
           nan_count,
           inf_count,
           num_count);
103
#else
W
WangXi 已提交
104
  if (true && threadIdx.x == 0) {
105 106 107 108 109
    printf("In block %d, there has %u,%u,%u nan,inf,num\n",
           blockIdx.x,
           nan_count,
           inf_count,
           num_count);
110
#endif
W
WangXi 已提交
111 112 113 114 115 116
    PADDLE_ENFORCE(false, "===ERROR: in %s find nan or inf===", debug_info);
  }
}

// Resnet 2gpus speed test, no check 270 images/s, this check 229 images/s
template <typename T>
117 118 119 120
__global__ void CheckNanInfKernel(const T* value,
                                  const size_t numel,
                                  int print_num,
                                  char* debug_info) {
W
WangXi 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
  /// step 1, judge wheater has nan or inf
  __shared__ volatile int has_nan_inf;
  if (threadIdx.x == 0) has_nan_inf = false;
  __syncthreads();

  const size_t tid = threadIdx.x + blockIdx.x * blockDim.x;
  T sum = static_cast<T>(0.0);
  // Todo(wangxi). simd speed up
  for (size_t i = tid; i < numel; i += blockDim.x * gridDim.x) {
    sum += (value[i] - value[i]);
  }

  if (isnan(sum) || isinf(sum)) has_nan_inf = true;
  __syncthreads();

  /// Note. different blocks may behave differently
  if (!has_nan_inf) return;

  PrintNanInfKernel(value, numel, print_num, debug_info);
}

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
template <
    typename T,
    std::enable_if_t<std::is_same<T, phi::dtype::complex<float>>::value ||
                         std::is_same<T, phi::dtype::complex<double>>::value,
                     bool> = true>
__device__ void BlockReduceMaxMinAndWrite(const T max_value,
                                          const T min_value,
                                          const T mean_value,
                                          int64_t offset,
                                          T* max_ptr,
                                          T* min_ptr,
                                          T* mean_ptr) {
  // TODO(Xreki): support complex
}

template <
    typename T,
    std::enable_if_t<!std::is_same<T, phi::dtype::complex<float>>::value &&
                         !std::is_same<T, phi::dtype::complex<double>>::value,
                     bool> = true>
__device__ void BlockReduceMaxMinAndWrite(const T max_value,
                                          const T min_value,
                                          const T mean_value,
                                          int64_t offset,
                                          T* max_ptr,
                                          T* min_ptr,
                                          T* mean_ptr) {
  if (max_ptr && min_ptr && mean_ptr) {
    __syncthreads();

    T block_max_value = phi::funcs::blockReduceMax<T>(max_value, FINAL_MASK);
    T block_min_value = phi::funcs::blockReduceMin<T>(min_value, FINAL_MASK);
    T block_mean_value = phi::funcs::blockReduceSum<T>(mean_value, FINAL_MASK);

    if (threadIdx.x == 0) {
      max_ptr[offset] = block_max_value;
      min_ptr[offset] = block_min_value;
      mean_ptr[offset] = block_mean_value;
    }
  }
}

template <typename T, typename MT>
__global__ void FindNanInfAndBlockMaxMin(const T* value_ptr,
                                         const int64_t numel,
                                         int* found_nan_inf_ptr,
                                         MT* tensor_block_max_ptr,
                                         MT* tensor_block_min_ptr,
                                         MT* tensor_block_mean_ptr) {
  bool has_nan = false;
  bool has_inf = false;

  int64_t i = threadIdx.x + blockIdx.x * blockDim.x;

  MT max_value = static_cast<MT>(i < numel ? value_ptr[i] : value_ptr[0]);
  MT min_value = static_cast<MT>(i < numel ? value_ptr[i] : value_ptr[0]);
  MT mean_value = static_cast<MT>(0);
  for (; i < numel; i += blockDim.x * gridDim.x) {
    MT value = static_cast<MT>(value_ptr[i]);

    max_value = value > max_value ? value : max_value;
    min_value = value < min_value ? value : min_value;
    mean_value += value / static_cast<MT>(numel);

    if (isnan(value)) {
      has_nan = true;
    }
    if (isinf(value)) {
      has_inf = true;
    }

    if (has_nan || has_inf) {
      if (!tensor_block_max_ptr && !tensor_block_min_ptr &&
          !tensor_block_mean_ptr) {
        break;
      }
    }
  }
  if (has_nan) {
    found_nan_inf_ptr[0] = 1;
  }
  if (has_inf) {
    found_nan_inf_ptr[1] = 1;
  }

  BlockReduceMaxMinAndWrite<MT>(max_value,
                                min_value,
                                mean_value,
                                blockIdx.x,
                                tensor_block_max_ptr,
                                tensor_block_min_ptr,
                                tensor_block_mean_ptr);
}

template <typename T>
__global__ void FindGlobalMaxMinAndPrint(const int* found_nan_inf_ptr,
                                         const T* tensor_block_max_ptr,
                                         const T* tensor_block_min_ptr,
                                         const T* tensor_block_mean_ptr,
                                         const char* debug_info,
                                         int64_t numel,
                                         int64_t numel_max_min,
                                         bool abort_on_nan_inf,
                                         bool check_tensor_max_min) {
  if (blockIdx.x == 0 && threadIdx.x == 0) {
    int has_nan = found_nan_inf_ptr[0];
    int has_inf = found_nan_inf_ptr[1];

    T max_value = static_cast<T>(0);
    T min_value = static_cast<T>(0);
    T mean_value = static_cast<T>(0);
    if (tensor_block_max_ptr && tensor_block_min_ptr && tensor_block_mean_ptr) {
      max_value = tensor_block_max_ptr[0];
      min_value = tensor_block_min_ptr[0];
      mean_value = tensor_block_mean_ptr[0];

      // numel_max_min <= 128
      for (int64_t i = 1; i < numel_max_min; ++i) {
        T tmp_max_value = tensor_block_max_ptr[i];
        T tmp_min_value = tensor_block_min_ptr[i];
        T tmp_mean_value = tensor_block_mean_ptr[i];

        max_value = tmp_max_value > max_value ? tmp_max_value : max_value;
        min_value = tmp_min_value < min_value ? tmp_min_value : min_value;
        mean_value += tmp_mean_value;
      }
    }

    if (has_nan || has_inf) {
      if (abort_on_nan_inf) {
        PADDLE_ENFORCE(false,
                       "===[PRECISION] [ERROR] in %s, numel=%ld, find_nan=%d, "
                       "find_inf=%d, "
                       "max=%e, min=%e, mean=%e===\n",
                       debug_info,
                       numel,
                       has_nan,
                       has_inf,
                       static_cast<float>(max_value),
                       static_cast<float>(min_value),
                       static_cast<float>(mean_value));
      } else {
        printf(
            "===[PRECISION] [ERROR] in %s, numel=%ld, find_nan=%d, "
            "find_inf=%d, "
            "max=%e, min=%e, mean=%e===\n",
            debug_info,
            numel,
            has_nan,
            has_inf,
            static_cast<float>(max_value),
            static_cast<float>(min_value),
            static_cast<float>(mean_value));
      }
    } else if (check_tensor_max_min) {
      printf("[PRECISION] in %s, numel=%ld, max=%e, min=%e, mean=%e\n",
             debug_info,
             numel,
             static_cast<float>(max_value),
             static_cast<float>(min_value),
             static_cast<float>(mean_value));
    }
  }
}

W
WangXi 已提交
307 308
template <>
template <typename T>
L
Leo Chen 已提交
309
void TensorCheckerVisitor<phi::GPUContext>::apply(
310 311 312 313 314
    typename std::enable_if<
        std::is_floating_point<T>::value ||
        std::is_same<T, ::paddle::platform::complex<float>>::value ||
        std::is_same<T, ::paddle::platform::complex<double>>::value>::type*)
    const {
L
Leo Chen 已提交
315
  auto* dev_ctx = reinterpret_cast<phi::GPUContext*>(
W
WangXi 已提交
316
      platform::DeviceContextPool::Instance().Get(tensor_.place()));
317
  int dev_id = tensor_.place().device;
W
WangXi 已提交
318
  PADDLE_ENFORCE_EQ(
319 320
      (dev_id >= 0 && dev_id < multi_op_var2gpu_str_mutex().size()),
      true,
W
WangXi 已提交
321 322 323
      platform::errors::OutOfRange("GPU dev_id must >=0 and < dev_count=%d",
                                   multi_op_var2gpu_str_mutex().size()));

324 325 326 327 328 329
  std::string dtype_str = DataTypeToString(DataTypeTrait<T>::DataType());
  if (dtype_str == "::paddle::platform::float16") {
    dtype_str = "float16";
  }
  std::string op_var = "[op=" + op_type_ + "] [tensor=" + var_name_ +
                       "] [dtype=" + dtype_str + "]";
W
WangXi 已提交
330 331 332 333 334 335 336 337
  char* gpu_str_ptr = NULL;

  {
    auto& op_var2gpu_str_mutex = multi_op_var2gpu_str_mutex().at(dev_id);
    auto& op_var2gpu_str = multi_op_var2gpu_str().at(dev_id);

    std::lock_guard<std::mutex> guard(op_var2gpu_str_mutex);
    if (op_var2gpu_str.find(op_var) == op_var2gpu_str.end()) {  // insert
338 339 340 341
      auto gpu_str_tensor = paddle::memory::Alloc(
          dev_ctx->GetPlace(),
          op_var.length() + 1,
          phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx->stream())));
W
WangXi 已提交
342 343 344 345 346
      gpu_str_ptr = reinterpret_cast<char*>(gpu_str_tensor->ptr());

      op_var2gpu_str.emplace(op_var, std::move(gpu_str_tensor));

      auto iter = op_var2gpu_str.find(op_var);
347 348
      PADDLE_ENFORCE_EQ(iter != op_var2gpu_str.end(),
                        true,
W
WangXi 已提交
349 350 351 352 353
                        platform::errors::PreconditionNotMet(
                            "op_var=%s should successed insert into "
                            "op_var2gpu_str, but now failed",
                            op_var));

354
#ifdef __HIPCC__
355 356 357 358 359
      PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(gpu_str_ptr,
                                                iter->first.c_str(),
                                                op_var.length() + 1,
                                                hipMemcpyHostToDevice,
                                                dev_ctx->stream()));
360
#else
361 362 363 364 365
      PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(gpu_str_ptr,
                                                 iter->first.c_str(),
                                                 op_var.length() + 1,
                                                 cudaMemcpyHostToDevice,
                                                 dev_ctx->stream()));
366
#endif
W
WangXi 已提交
367 368
    } else {  // get
      auto iter = op_var2gpu_str.find(op_var);
369 370
      PADDLE_ENFORCE_EQ(iter != op_var2gpu_str.end(),
                        true,
W
WangXi 已提交
371 372 373 374 375 376 377 378
                        platform::errors::PreconditionNotMet(
                            "op_var=%s should be in the op_var2gpu_str, but "
                            "now can't find it",
                            op_var));
      gpu_str_ptr = reinterpret_cast<char*>(iter->second->ptr());
    }
  }

379 380 381 382
#ifdef __HIPCC__
  // HIP will throw GPU memory access fault if threads > 256
  const size_t threads = 256;
#else
W
WangXi 已提交
383
  const size_t threads = 1024;
384
#endif
385 386 387
  size_t blocks =
      std::min(static_cast<size_t>(128),
               static_cast<size_t>((tensor_.numel() + threads - 1) / threads));
388
#ifdef __HIPCC__
389 390
  int print_num = 3;

391 392 393 394 395 396 397 398 399
  hipLaunchKernelGGL(CheckNanInfKernel,
                     dim3(blocks),
                     dim3(threads),
                     0,
                     dev_ctx->stream(),
                     tensor_.data<T>(),
                     tensor_.numel(),
                     print_num,
                     gpu_str_ptr);
400
#else
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
  using MT = typename phi::dtype::MPTypeTrait<T>::Type;

  phi::DenseTensor found_nan_inf;
  found_nan_inf.Resize({2});
  int* found_nan_inf_ptr = found_nan_inf.mutable_data<int>(tensor_.place());
  PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(
      found_nan_inf_ptr, 0, 2 * sizeof(int), dev_ctx->stream()));

  int64_t numel_max_min = blocks;

  phi::DenseTensor tensor_block_max_min;
  tensor_block_max_min.Resize({static_cast<int64_t>(3 * numel_max_min)});
  MT* tensor_block_max_ptr =
      tensor_block_max_min.mutable_data<MT>(tensor_.place());
  MT* tensor_block_min_ptr = tensor_block_max_ptr + numel_max_min;
  MT* tensor_block_mean_ptr = tensor_block_max_ptr + 2 * numel_max_min;

  FindNanInfAndBlockMaxMin<T, MT>
      <<<blocks, threads, 0, dev_ctx->stream()>>>(tensor_.data<T>(),
                                                  tensor_.numel(),
                                                  found_nan_inf_ptr,
                                                  tensor_block_max_ptr,
                                                  tensor_block_min_ptr,
                                                  tensor_block_mean_ptr);

  bool abort_on_nan_inf = FLAGS_abort_on_nan_inf;
  bool check_tensor_max_min = FLAGS_check_tensor_max_min;
  FindGlobalMaxMinAndPrint<MT>
      <<<1, 1, 0, dev_ctx->stream()>>>(found_nan_inf_ptr,
                                       tensor_block_max_ptr,
                                       tensor_block_min_ptr,
                                       tensor_block_mean_ptr,
                                       gpu_str_ptr,
                                       tensor_.numel(),
                                       numel_max_min,
                                       abort_on_nan_inf,
                                       check_tensor_max_min);
438
#endif
W
WangXi 已提交
439 440 441
}

template <>
L
Leo Chen 已提交
442 443
void tensor_check<phi::GPUContext>(const std::string& op_type,
                                   const std::string& var_name,
444
                                   const phi::DenseTensor& tensor,
L
Leo Chen 已提交
445
                                   const platform::Place& place) {
W
WangXi 已提交
446 447
  std::call_once(init_multi_gpu_op_var_map_flag, InitMultiGPUOpVarMap);

L
Leo Chen 已提交
448
  TensorCheckerVisitor<phi::GPUContext> vistor(
449
      op_type, var_name, tensor, place);
450
  VisitDataType(framework::TransToProtoVarType(tensor.dtype()), vistor);
W
WangXi 已提交
451 452 453 454 455
}

}  // namespace details
}  // namespace framework
}  // namespace paddle