nan_inf_utils_detail.cu 8.6 KB
Newer Older
W
WangXi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
#include <unordered_map>
#include <utility>
#include <vector>
19

20
#include "paddle/fluid/framework/convert_utils.h"
21 22
#include "paddle/fluid/framework/details/nan_inf_utils.h"
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
23
#include "paddle/fluid/framework/scope.h"
W
WangXi 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

namespace paddle {
namespace framework {
namespace details {

static std::once_flag init_multi_gpu_op_var_map_flag;

// lazy init
static std::vector<std::unordered_map<std::string, memory::AllocationPtr>>&
multi_op_var2gpu_str() {
  static std::vector<std::unordered_map<std::string, memory::AllocationPtr>>
      _multi_op_var2gpu_str;
  return _multi_op_var2gpu_str;
}

static std::vector<std::mutex>& multi_op_var2gpu_str_mutex() {
  static std::vector<std::mutex> _multi_op_var2gpu_str_mutex;
  return _multi_op_var2gpu_str_mutex;
}

static void InitMultiGPUOpVarMap() {
45
  int dev_count = platform::GetGPUDeviceCount();
46 47
  PADDLE_ENFORCE_GT(dev_count,
                    0,
W
WangXi 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
                    platform::errors::NotFound(
                        "cuda device must > 0, now dev_count=%d", dev_count));

  // https://stackoverflow.com/questions/16465633/how-can-i-use-something-like-stdvectorstdmutex
  std::vector<std::unordered_map<std::string, memory::AllocationPtr>> tmp_multi(
      dev_count);
  std::vector<std::mutex> tmp_multi_mutex(dev_count);

  multi_op_var2gpu_str().swap(tmp_multi);
  multi_op_var2gpu_str_mutex().swap(tmp_multi_mutex);
}

template <typename T>
__device__ __forceinline__ void PrintNanInfKernel(const T* value,
                                                  const size_t numel,
                                                  int print_num,
                                                  char* debug_info) {
  const size_t tid = threadIdx.x + blockIdx.x * blockDim.x;

  __shared__ unsigned int nan_count, inf_count, num_count;
  if (threadIdx.x == 0) nan_count = inf_count = num_count = 0;
  __syncthreads;

  for (size_t i = tid; i < numel; i += blockDim.x * gridDim.x) {
    unsigned int count = 0;
    if (isnan(value[i])) {
      count = atomicAdd(&nan_count, 1);
    } else if (isinf(value[i])) {
      count = atomicAdd(&inf_count, 1);
    } else {
      count = atomicAdd(&num_count, 1);
    }
    // for cuda, print in every block
    if (count < print_num) {
82 83 84 85
      printf("numel:%lu idx:%lu value:%f\n",
             static_cast<uint64_t>(numel),
             static_cast<uint64_t>(i),
             static_cast<float>(value[i]));
W
WangXi 已提交
86 87 88 89
    }
  }
  __syncthreads;

90
#ifdef __HIPCC__
91
  if (true && hipThreadIdx_x == 0) {
92 93 94 95 96
    printf("In block %d, there has %u,%u,%u nan,inf,num\n",
           hipBlockIdx_x,
           nan_count,
           inf_count,
           num_count);
97
#else
W
WangXi 已提交
98
  if (true && threadIdx.x == 0) {
99 100 101 102 103
    printf("In block %d, there has %u,%u,%u nan,inf,num\n",
           blockIdx.x,
           nan_count,
           inf_count,
           num_count);
104
#endif
W
WangXi 已提交
105 106 107 108 109 110
    PADDLE_ENFORCE(false, "===ERROR: in %s find nan or inf===", debug_info);
  }
}

// Resnet 2gpus speed test, no check 270 images/s, this check 229 images/s
template <typename T>
111 112 113 114
__global__ void CheckNanInfKernel(const T* value,
                                  const size_t numel,
                                  int print_num,
                                  char* debug_info) {
W
WangXi 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
  /// step 1, judge wheater has nan or inf
  __shared__ volatile int has_nan_inf;
  if (threadIdx.x == 0) has_nan_inf = false;
  __syncthreads();

  const size_t tid = threadIdx.x + blockIdx.x * blockDim.x;
  T sum = static_cast<T>(0.0);
  // Todo(wangxi). simd speed up
  for (size_t i = tid; i < numel; i += blockDim.x * gridDim.x) {
    sum += (value[i] - value[i]);
  }

  if (isnan(sum) || isinf(sum)) has_nan_inf = true;
  __syncthreads();

  /// Note. different blocks may behave differently
  if (!has_nan_inf) return;

  PrintNanInfKernel(value, numel, print_num, debug_info);
}

template <>
template <typename T>
L
Leo Chen 已提交
138
void TensorCheckerVisitor<phi::GPUContext>::apply(
139 140 141 142 143
    typename std::enable_if<
        std::is_floating_point<T>::value ||
        std::is_same<T, ::paddle::platform::complex<float>>::value ||
        std::is_same<T, ::paddle::platform::complex<double>>::value>::type*)
    const {
W
WangXi 已提交
144 145
  int print_num = 3;

L
Leo Chen 已提交
146
  auto* dev_ctx = reinterpret_cast<phi::GPUContext*>(
W
WangXi 已提交
147
      platform::DeviceContextPool::Instance().Get(tensor_.place()));
148
  int dev_id = tensor_.place().device;
W
WangXi 已提交
149
  PADDLE_ENFORCE_EQ(
150 151
      (dev_id >= 0 && dev_id < multi_op_var2gpu_str_mutex().size()),
      true,
W
WangXi 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
      platform::errors::OutOfRange("GPU dev_id must >=0 and < dev_count=%d",
                                   multi_op_var2gpu_str_mutex().size()));

  std::string op_var = "[op=" + op_type_ + "] [tensor=" + var_name_ + "]";
  char* gpu_str_ptr = NULL;

  {
    auto& op_var2gpu_str_mutex = multi_op_var2gpu_str_mutex().at(dev_id);
    auto& op_var2gpu_str = multi_op_var2gpu_str().at(dev_id);

    std::lock_guard<std::mutex> guard(op_var2gpu_str_mutex);
    if (op_var2gpu_str.find(op_var) == op_var2gpu_str.end()) {  // insert
      auto gpu_str_tensor =
          paddle::memory::Alloc(*dev_ctx, op_var.length() + 1);
      gpu_str_ptr = reinterpret_cast<char*>(gpu_str_tensor->ptr());

      op_var2gpu_str.emplace(op_var, std::move(gpu_str_tensor));

      auto iter = op_var2gpu_str.find(op_var);
171 172
      PADDLE_ENFORCE_EQ(iter != op_var2gpu_str.end(),
                        true,
W
WangXi 已提交
173 174 175 176 177
                        platform::errors::PreconditionNotMet(
                            "op_var=%s should successed insert into "
                            "op_var2gpu_str, but now failed",
                            op_var));

178
#ifdef __HIPCC__
179 180 181 182 183
      PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(gpu_str_ptr,
                                                iter->first.c_str(),
                                                op_var.length() + 1,
                                                hipMemcpyHostToDevice,
                                                dev_ctx->stream()));
184
#else
185 186 187 188 189
      PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(gpu_str_ptr,
                                                 iter->first.c_str(),
                                                 op_var.length() + 1,
                                                 cudaMemcpyHostToDevice,
                                                 dev_ctx->stream()));
190
#endif
W
WangXi 已提交
191 192
    } else {  // get
      auto iter = op_var2gpu_str.find(op_var);
193 194
      PADDLE_ENFORCE_EQ(iter != op_var2gpu_str.end(),
                        true,
W
WangXi 已提交
195 196 197 198 199 200 201 202
                        platform::errors::PreconditionNotMet(
                            "op_var=%s should be in the op_var2gpu_str, but "
                            "now can't find it",
                            op_var));
      gpu_str_ptr = reinterpret_cast<char*>(iter->second->ptr());
    }
  }

203 204 205 206
#ifdef __HIPCC__
  // HIP will throw GPU memory access fault if threads > 256
  const size_t threads = 256;
#else
W
WangXi 已提交
207
  const size_t threads = 1024;
208
#endif
209 210 211
  size_t blocks =
      std::min(static_cast<size_t>(128),
               static_cast<size_t>((tensor_.numel() + threads - 1) / threads));
212
#ifdef __HIPCC__
213 214 215 216 217 218 219 220 221
  hipLaunchKernelGGL(CheckNanInfKernel,
                     dim3(blocks),
                     dim3(threads),
                     0,
                     dev_ctx->stream(),
                     tensor_.data<T>(),
                     tensor_.numel(),
                     print_num,
                     gpu_str_ptr);
222
#else
W
WangXi 已提交
223 224
  CheckNanInfKernel<<<blocks, threads, 0, dev_ctx->stream()>>>(
      tensor_.data<T>(), tensor_.numel(), print_num, gpu_str_ptr);
225
#endif
W
WangXi 已提交
226 227 228
}

template <>
L
Leo Chen 已提交
229 230 231 232
void tensor_check<phi::GPUContext>(const std::string& op_type,
                                   const std::string& var_name,
                                   const framework::Tensor& tensor,
                                   const platform::Place& place) {
W
WangXi 已提交
233 234
  std::call_once(init_multi_gpu_op_var_map_flag, InitMultiGPUOpVarMap);

L
Leo Chen 已提交
235
  TensorCheckerVisitor<phi::GPUContext> vistor(
236
      op_type, var_name, tensor, place);
237
  VisitDataType(framework::TransToProtoVarType(tensor.dtype()), vistor);
W
WangXi 已提交
238 239 240 241 242
}

}  // namespace details
}  // namespace framework
}  // namespace paddle