transpose_op.cc 14.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
xzl 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
xzl 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
xzl 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
xzl 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/transpose_op.h"
16

17
#include <memory>
18
#include <string>
19
#include <vector>
X
xzl 已提交
20

21 22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

X
xzl 已提交
25 26 27 28 29 30 31
namespace paddle {
namespace operators {

class TransposeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

32
  void InferShape(framework::InferShapeContext *ctx) const override {
33 34
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Transpose");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Transpose");
Q
Qiao Longfei 已提交
35 36
    auto x_dims = ctx->GetInputDim("X");
    std::vector<int> axis = ctx->Attrs().Get<std::vector<int>>("axis");
X
xzl 已提交
37
    size_t x_rank = x_dims.size();
X
xzl 已提交
38
    size_t axis_size = axis.size();
X
xzl 已提交
39

40 41
    PADDLE_ENFORCE_EQ(x_rank,
                      axis_size,
42 43 44 45 46
                      platform::errors::InvalidArgument(
                          "The input tensor's dimension "
                          "should be equal to the axis's size. "
                          "But received input tensor's dimension is %d, "
                          "axis's size is %d",
47 48
                          x_rank,
                          axis_size));
49 50 51

    std::vector<int> count(axis_size, 0);
    for (size_t i = 0; i < axis_size; i++) {
52 53
      PADDLE_ENFORCE_GE(axis[i],
                        0,
54 55 56
                        platform::errors::InvalidArgument(
                            "The axis should be greater than or equal to 0."
                            "But received %d of axis[%d]",
57 58
                            axis[i],
                            i));
59

60
      PADDLE_ENFORCE_EQ(
61 62
          axis[i] < static_cast<int>(axis_size) && ++count[axis[i]] == 1,
          true,
63 64 65 66 67 68 69
          platform::errors::InvalidArgument(
              "Each element of Attribute axis should "
              "be a unique value range from 0 to (dims - 1), "
              "where the dims is the axis's size, "
              "unique value means this axis value can appear only once. "
              "But received axis[%d] is %d, axis_size is %d, "
              "count[axis[%d]] is %d",
70 71 72 73 74
              i,
              axis[i],
              axis_size,
              i,
              count[axis[i]]));
X
xzl 已提交
75
    }
X
xzl 已提交
76

X
xzl 已提交
77
    framework::DDim out_dims(x_dims);
J
Jacek Czaja 已提交
78 79 80
#ifdef PADDLE_WITH_MKLDNN
    // Here we need to match dims to paddle layout
    // as we are producing non-oneDNN result
81
    if (ctx->IsRunMKLDNNKernel() && (x_dims.size() >= 3) &&
J
Jacek Czaja 已提交
82 83
        (paddle::platform::MKLDNNDeviceContext::tls()
             .get_cur_paddle_data_layout() == framework::DataLayout::kNHWC)) {
84
      auto dims = phi::vectorize<int>(x_dims);
J
Jacek Czaja 已提交
85 86 87 88 89 90
      std::rotate(dims.begin() + 1, dims.begin() + 2, dims.end());
      x_dims = x_dims.reshape(dims);
      VLOG(3)
          << "Rotating Shape in Transpose from: kMKLDNN to: kNHWC output_shape";
    }
#endif
91
    for (size_t i = 0; i < axis_size; i++) {
X
xzl 已提交
92
      out_dims[i] = x_dims[axis[i]];
X
xzl 已提交
93
    }
Q
Qiao Longfei 已提交
94
    ctx->SetOutputDim("Out", out_dims);
X
xzl 已提交
95
  }
96 97 98 99

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
100
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
101
#ifdef PADDLE_WITH_MKLDNN
J
jiahongyu 已提交
102 103 104 105 106
    if (this->CanMKLDNNBeUsed(ctx, data_type)) {
      return framework::OpKernelType(data_type,
                                     ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
107 108
    }
#endif
J
jiahongyu 已提交
109 110 111
    auto &data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout_);
112
  }
X
xzl 已提交
113 114 115 116
};

class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
117
  void Make() override {
118
    AddInput(
X
xzl 已提交
119
        "X",
120 121
        "(Tensor) The input tensor, tensors with rank up to 6 are supported.");
    AddOutput("Out", "(Tensor)The output tensor.");
X
xzl 已提交
122 123
    AddAttr<std::vector<int>>(
        "axis",
124 125 126
        "(vector<int>) A list of values, and the size of the list should be "
        "the same with the input tensor rank. This operator permutes the input "
        "tensor's axes according to the values given.");
127 128
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
129 130
        .SetDefault(false)
        .AsExtra();
131 132 133 134 135 136
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
137 138
        .SetDefault("AnyLayout")
        .AsExtra();
139 140 141 142
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
143 144
        .SetDefault(false)
        .AsExtra();
145 146 147 148
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
149 150
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
151
    /* int8 parameters */
X
xzl 已提交
152
    AddComment(R"DOC(
153 154
Transpose Operator.

155 156
The input tensor will be permuted according to the axes given.
The behavior of this operator is similar to how `numpy.transpose` works.
Y
ying 已提交
157

158 159 160 161 162 163
- suppose the input `X` is a 2-D tensor:
    $$
    X = \begin{pmatrix}
    0 &1 &2 \\
    3 &4 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
164

165
    the given `axes` is: $[1, 0]$, and $Y$ = transpose($X$, axis)
W
wanghaoshuang 已提交
166

167
    then the output $Y$ is:
W
wanghaoshuang 已提交
168

169 170 171 172 173 174
    $$
    Y = \begin{pmatrix}
         0 &3 \\
         1 &4  \\
         2 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
175

176
- Given a input tensor with shape $(N, C, H, W)$ and the `axes` is
177
$[0, 2, 3, 1]$, then shape of the output tensor will be: $(N, H, W, C)$.
178

X
xzl 已提交
179 180 181 182 183 184 185 186
)DOC");
  }
};

class TransposeOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

187
  void InferShape(framework::InferShapeContext *ctx) const override {
188
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "TransposeOpGrad");
189 190 191 192
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
                   "TransposeOpGrad");
Q
Qiao Longfei 已提交
193 194 195 196 197
    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
X
xzl 已提交
198
  }
199 200 201 202

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
203 204
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
205
#ifdef PADDLE_WITH_MKLDNN
J
jiahongyu 已提交
206 207 208 209 210
    if (this->CanMKLDNNBeUsed(ctx, data_type)) {
      return framework::OpKernelType(data_type,
                                     ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
211 212
    }
#endif
J
jiahongyu 已提交
213 214 215
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout_);
216
  }
X
xzl 已提交
217 218
};

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
// FIXME(zcd): transpose2 adds an intermediate output(XShape) based on
// transpose, the XShape is used to carry the shape and lod of X which
// will be used in transpose_grad, in this way, the framework can reuse
// the memory of X immediately the transpose2_op is finished.
// Considering compatibility issues, we could not fix transpose2_op
class Transpose2Op : public TransposeOp {
 public:
  Transpose2Op(const std::string &type,
               const framework::VariableNameMap &inputs,
               const framework::VariableNameMap &outputs,
               const framework::AttributeMap &attrs)
      : TransposeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    TransposeOp::InferShape(ctx);
234
    if (!ctx->HasOutput("XShape")) return;
235 236 237 238 239 240
    const auto &in_dims = ctx->GetInputDim("X");
    std::vector<int64_t> x_shape_dim(in_dims.size() + 1);
    x_shape_dim[0] = 0;
    for (int i = 0; i < in_dims.size(); ++i) {
      x_shape_dim[i + 1] = in_dims[i];
    }
241
    ctx->SetOutputDim("XShape", phi::make_ddim(x_shape_dim));
242 243 244 245 246 247
    ctx->ShareLoD("X", /*->*/ "XShape");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
248 249
    framework::proto::VarType::Type data_type =
        OperatorWithKernel::IndicateVarDataType(ctx, "X");
250
#ifdef PADDLE_WITH_MKLDNN
J
jiahongyu 已提交
251 252 253 254
    if (this->CanMKLDNNBeUsed(ctx, data_type)) {
      return framework::OpKernelType(data_type,
                                     ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
255
                                     framework::LibraryType::kMKLDNN);
256 257
    }
#endif
J
jiahongyu 已提交
258 259 260
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout_);
261 262 263
  }
};

264
class Transpose2OpMaker : public framework::OpProtoAndCheckerMaker {
265 266
 public:
  void Make() override {
267 268 269 270 271 272 273 274 275
    AddInput(
        "X",
        "(Tensor) The input tensor, tensors with rank up to 6 are supported.");
    AddOutput("Out", "(Tensor)The output tensor.");
    AddAttr<std::vector<int>>(
        "axis",
        "(vector<int>) A list of values, and the size of the list should be "
        "the same with the input tensor rank. This operator permutes the input "
        "tensor's axes according to the values given.");
276 277 278
    AddOutput("XShape", "(Tensor)The output tensor.")
        .AsIntermediate()
        .AsExtra();
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    AddComment(R"DOC(
Transpose Operator.

The input tensor will be permuted according to the axes given.
The behavior of this operator is similar to how `numpy.transpose` works.

- suppose the input `X` is a 2-D tensor:
    $$
    X = \begin{pmatrix}
    0 &1 &2 \\
    3 &4 &5
    \end{pmatrix}$$

    the given `axes` is: $[1, 0]$, and $Y$ = transpose($X$, axis)

    then the output $Y$ is:

    $$
    Y = \begin{pmatrix}
         0 &3 \\
         1 &4  \\
         2 &5
    \end{pmatrix}$$

- Given a input tensor with shape $(N, C, H, W)$ and the `axes` is
$[0, 2, 3, 1]$, then shape of the output tensor will be: $(N, H, W, C)$.

)DOC");
307 308 309
  }
};

H
hong 已提交
310 311
template <typename T>
class Transpose2GradMaker : public framework::SingleGradOpMaker<T> {
312
 public:
H
hong 已提交
313
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
314

315
  void Apply(GradOpPtr<T> grad_op) const override {
316
    grad_op->SetType("transpose2_grad");
H
hong 已提交
317 318 319 320
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
321 322 323
  }
};

324 325 326 327 328 329 330 331 332 333 334 335 336 337
template <typename T>
class Transpose2DoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("transpose2");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetOutput("XShape", this->Input("XShape"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

338 339 340 341 342
class Transpose2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
343 344 345 346 347
    OP_INOUT_CHECK(
        ctx->HasInput("XShape"), "Input", "XShape", "Transpose2OpGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
348
                   "Transpose2OpGrad");
349 350
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      auto xshape_dim = ctx->GetInputDim("XShape");
351
      auto x_shape_dim = phi::slice_ddim(xshape_dim, 1, xshape_dim.size());
352 353 354 355 356 357 358 359
      ctx->SetOutputDim(framework::GradVarName("X"), x_shape_dim);
      ctx->ShareLoD("XShape", framework::GradVarName("X"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
360 361 362
    framework::proto::VarType::Type data_type =
        OperatorWithKernel::IndicateVarDataType(ctx,
                                                framework::GradVarName("Out"));
363
#ifdef PADDLE_WITH_MKLDNN
J
jiahongyu 已提交
364 365 366 367 368
    if (this->CanMKLDNNBeUsed(ctx, data_type)) {
      return framework::OpKernelType(data_type,
                                     ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
369 370
    }
#endif
J
jiahongyu 已提交
371 372 373
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout_);
374 375 376
  }
};

H
hong 已提交
377 378 379 380 381 382 383 384
class TransposeGradInferVarType : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    ctx->SyncTypeAndDataType(framework::GradVarName("Out"),
                             framework::GradVarName("X"));
  }
};

X
xzl 已提交
385 386 387 388
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
389
REGISTER_OPERATOR(
390 391 392
    transpose,
    ops::TransposeOp,
    ops::TransposeOpMaker,
H
hong 已提交
393 394
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
395 396
REGISTER_OPERATOR(transpose_grad,
                  ops::TransposeOpGrad,
H
hong 已提交
397
                  ops::TransposeGradInferVarType);
398

399 400 401
REGISTER_OPERATOR(transpose2,
                  ops::Transpose2Op,
                  ops::Transpose2OpMaker,
H
hong 已提交
402 403
                  ops::Transpose2GradMaker<paddle::framework::OpDesc>,
                  ops::Transpose2GradMaker<paddle::imperative::OpBase>);
404 405
REGISTER_OPERATOR(transpose2_grad,
                  ops::Transpose2OpGrad,
H
hong 已提交
406
                  ops::TransposeGradInferVarType,
407 408
                  ops::Transpose2DoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Transpose2DoubleGradMaker<paddle::imperative::OpBase>);