sequence_softmax_op.cc 6.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_softmax_op.h"
16

17
#include <string>
18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {

class SequenceSoftmaxOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext* ctx) const override {
27 28
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SequenceSoftmax");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "SequenceSoftmax");
29 30

    ctx->ShareDim("X", /*->*/ "Out");
31
    ctx->ShareLoD("X", /*->*/ "Out");
32
  }
33 34 35 36 37

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
38 39
    bool use_cudnn =
        ctx.HasAttr("use_cudnn") ? ctx.Attr<bool>("use_cudnn") : false;
40
    bool runtime_cudnn_support = false;
41
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
42
    if (platform::is_gpu_place(ctx.GetPlace())) {
L
Leo Chen 已提交
43
      auto& dev_ctx = ctx.template device_context<phi::GPUContext>();
44 45 46 47 48 49 50
      runtime_cudnn_support = dev_ctx.cudnn_handle() != nullptr ? true : false;
    }
#endif
    framework::LibraryType library_ = framework::LibraryType::kPlain;
    if (use_cudnn && runtime_cudnn_support) {
      library_ = framework::LibraryType::kCUDNN;
    }
51 52 53
    std::string data_format = ctx.HasAttr("data_format")
                                  ? ctx.Attr<std::string>("data_format")
                                  : "AnyLayout";
54
    return framework::OpKernelType(
55 56
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.GetPlace(),
57
        phi::StringToDataLayout(data_format),
58
        library_);
59
  }
60 61 62 63
};

class SequenceSoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
64
  void Make() override {
65 66 67 68 69 70
    AddInput("X",
             "(LoDTensor) 1-D or 2-D input LoDTensor with the 2-nd dimension "
             "of length 1.");
    AddOutput("Out",
              "(LoDTensor) 1-D or 2-D output LoDTensor with the 2-nd dimension "
              "of length 1.");
71 72 73
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
74 75
        .SetDefault(false)
        .AsExtra();
76
    AddComment(R"DOC(
77 78 79
Sequence Softmax Operator.

SequenceSoftmaxOp computes the softmax activation among all time-steps for each
80
sequence. The dimension of each time-step should be 1. Thus, the shape of
81 82
input Tensor can be either [N, 1] or [N], where N is the sum of the length
of all sequences.
83

84
The algorithm works as follows:
W
whs 已提交
85

86
    for i-th sequence in a mini-batch:
W
whs 已提交
87 88 89 90 91 92

$$
Out(X[lod[i]:lod[i+1]], :) = \
\frac{\exp(X[lod[i]:lod[i+1], :])} \
{\sum(\exp(X[lod[i]:lod[i+1], :]))}
$$
93 94 95

For example, for a mini-batch of 3 sequences with variable-length,
each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
96
then softmax will be computed among X[0:2, :], X[2:5, :], X[5:7, :]
97
and N turns out to be 7.
98

99 100 101 102 103 104 105 106
)DOC");
  }
};

class SequenceSoftmaxGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

107
  void InferShape(framework::InferShapeContext* ctx) const override {
108
    OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "SequenceSoftmaxGrad");
109 110 111 112
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   "Out@GRAD",
                   "SequenceSoftmaxGrad");
113
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SequenceSoftmaxGrad");
114 115 116 117
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")),
                   "Output",
                   "X@GRAD",
                   "SequenceSoftmaxGrad");
118 119 120

    auto out_dim = ctx->GetInputDim("Out");
    auto out_grad_dim = ctx->GetInputDim(framework::GradVarName("Out"));
121
    PADDLE_ENFORCE_EQ(
122 123
        out_dim,
        out_grad_dim,
124 125 126 127
        platform::errors::InvalidArgument(
            "The shape of Input(Out) and Input(Out@GRAD) of "
            "SequenceSoftmaxGrad operator do not match. The Input(Out)'s shape "
            "is [%s], the Input(Out@GRAD)'s shape is [%s].",
128 129
            out_dim,
            out_grad_dim));
130 131 132

    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
133 134 135 136 137

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
138 139
    bool use_cudnn =
        ctx.HasAttr("use_cudnn") ? ctx.Attr<bool>("use_cudnn") : false;
140
    bool runtime_cudnn_support = false;
141
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
142
    if (platform::is_gpu_place(ctx.GetPlace())) {
L
Leo Chen 已提交
143
      auto& dev_ctx = ctx.template device_context<phi::GPUContext>();
144 145 146 147 148 149 150
      runtime_cudnn_support = dev_ctx.cudnn_handle() != nullptr ? true : false;
    }
#endif
    framework::LibraryType library_ = framework::LibraryType::kPlain;
    if (use_cudnn && runtime_cudnn_support) {
      library_ = framework::LibraryType::kCUDNN;
    }
151 152 153
    std::string data_format = ctx.HasAttr("data_format")
                                  ? ctx.Attr<std::string>("data_format")
                                  : "AnyLayout";
154
    return framework::OpKernelType(
155 156
        OperatorWithKernel::IndicateVarDataType(ctx, "Out"),
        ctx.GetPlace(),
157
        phi::StringToDataLayout(data_format),
158
        library_);
159
  }
160 161
};

162
DECLARE_NO_NEED_BUFFER_VARS_INFERER(
163 164
    SequenceSoftmaxGradOpNoNeedBufferVarsInferer, "X");

165 166 167 168
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
169
REGISTER_OPERATOR(
170 171 172
    sequence_softmax,
    ops::SequenceSoftmaxOp,
    ops::SequenceSoftmaxOpMaker,
H
hong 已提交
173 174
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
175 176
REGISTER_OPERATOR(sequence_softmax_grad,
                  ops::SequenceSoftmaxGradOp,
177
                  ops::SequenceSoftmaxGradOpNoNeedBufferVarsInferer);
L
Leo Chen 已提交
178 179 180 181 182 183
REGISTER_OP_CPU_KERNEL(sequence_softmax,
                       ops::SequenceSoftmaxKernel<phi::CPUContext, float>,
                       ops::SequenceSoftmaxKernel<phi::CPUContext, double>);
REGISTER_OP_CPU_KERNEL(sequence_softmax_grad,
                       ops::SequenceSoftmaxGradKernel<phi::CPUContext, float>,
                       ops::SequenceSoftmaxGradKernel<phi::CPUContext, double>);