sequence_softmax_op.cc 6.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_softmax_op.h"
16
#include <string>
17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

class SequenceSoftmaxOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
26 27
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SequenceSoftmax");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "SequenceSoftmax");
28 29

    ctx->ShareDim("X", /*->*/ "Out");
30
    ctx->ShareLoD("X", /*->*/ "Out");
31
  }
32 33 34 35 36 37 38

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
    bool use_cudnn = ctx.Attr<bool>("use_cudnn");
    bool runtime_cudnn_support = false;
39
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
40 41 42 43 44 45 46 47 48 49 50 51
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      runtime_cudnn_support = dev_ctx.cudnn_handle() != nullptr ? true : false;
    }
#endif
    framework::LibraryType library_ = framework::LibraryType::kPlain;
    if (use_cudnn && runtime_cudnn_support) {
      library_ = framework::LibraryType::kCUDNN;
    }
    std::string data_format = ctx.Attr<std::string>("data_format");
    return framework::OpKernelType(
52
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
53 54
        framework::StringToDataLayout(data_format), library_);
  }
55 56 57 58
};

class SequenceSoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
59
  void Make() override {
60 61 62 63 64 65
    AddInput("X",
             "(LoDTensor) 1-D or 2-D input LoDTensor with the 2-nd dimension "
             "of length 1.");
    AddOutput("Out",
              "(LoDTensor) 1-D or 2-D output LoDTensor with the 2-nd dimension "
              "of length 1.");
66 67 68 69 70 71 72 73 74 75 76
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
77
    AddComment(R"DOC(
78 79 80
Sequence Softmax Operator.

SequenceSoftmaxOp computes the softmax activation among all time-steps for each
81
sequence. The dimension of each time-step should be 1. Thus, the shape of
82 83
input Tensor can be either [N, 1] or [N], where N is the sum of the length
of all sequences.
84

85
The algorithm works as follows:
W
whs 已提交
86

87
    for i-th sequence in a mini-batch:
W
whs 已提交
88 89 90 91 92 93

$$
Out(X[lod[i]:lod[i+1]], :) = \
\frac{\exp(X[lod[i]:lod[i+1], :])} \
{\sum(\exp(X[lod[i]:lod[i+1], :]))}
$$
94 95 96

For example, for a mini-batch of 3 sequences with variable-length,
each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
97
then softmax will be computed among X[0:2, :], X[2:5, :], X[5:7, :]
98
and N turns out to be 7.
99

100 101 102 103 104 105 106 107
)DOC");
  }
};

class SequenceSoftmaxGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

108
  void InferShape(framework::InferShapeContext* ctx) const override {
109 110 111 112 113 114 115 116 117
    OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "SequenceSoftmaxGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "SequenceSoftmaxGrad");
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SequenceSoftmaxGrad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   "X@GRAD", "SequenceSoftmaxGrad");

    auto out_dim = ctx->GetInputDim("Out");
    auto out_grad_dim = ctx->GetInputDim(framework::GradVarName("Out"));
118
    PADDLE_ENFORCE_EQ(
119 120 121 122 123 124
        out_dim, out_grad_dim,
        platform::errors::InvalidArgument(
            "The shape of Input(Out) and Input(Out@GRAD) of "
            "SequenceSoftmaxGrad operator do not match. The Input(Out)'s shape "
            "is [%s], the Input(Out@GRAD)'s shape is [%s].",
            out_dim, out_grad_dim));
125 126 127

    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
128 129 130 131 132 133 134

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
    bool use_cudnn = ctx.Attr<bool>("use_cudnn");
    bool runtime_cudnn_support = false;
135
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
136 137 138 139 140 141 142 143 144 145 146 147
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      runtime_cudnn_support = dev_ctx.cudnn_handle() != nullptr ? true : false;
    }
#endif
    framework::LibraryType library_ = framework::LibraryType::kPlain;
    if (use_cudnn && runtime_cudnn_support) {
      library_ = framework::LibraryType::kCUDNN;
    }
    std::string data_format = ctx.Attr<std::string>("data_format");
    return framework::OpKernelType(
148
        OperatorWithKernel::IndicateVarDataType(ctx, "Out"), ctx.GetPlace(),
149 150
        framework::StringToDataLayout(data_format), library_);
  }
151 152
};

153
DECLARE_NO_NEED_BUFFER_VARS_INFERER(
154 155
    SequenceSoftmaxGradOpNoNeedBufferVarsInferer, "X");

156 157 158 159
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
160 161 162 163
REGISTER_OPERATOR(
    sequence_softmax, ops::SequenceSoftmaxOp, ops::SequenceSoftmaxOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
164 165
REGISTER_OPERATOR(sequence_softmax_grad, ops::SequenceSoftmaxGradOp,
                  ops::SequenceSoftmaxGradOpNoNeedBufferVarsInferer);
166 167
REGISTER_OP_CPU_KERNEL(
    sequence_softmax,
168 169
    ops::SequenceSoftmaxKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceSoftmaxKernel<paddle::platform::CPUDeviceContext, double>);
170 171
REGISTER_OP_CPU_KERNEL(
    sequence_softmax_grad,
172 173
    ops::SequenceSoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceSoftmaxGradKernel<paddle::platform::CPUDeviceContext, double>);