analyzer_ernie_tester.cc 5.6 KB
Newer Older
G
GaoWei8 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Z
Zuza 已提交
15
#include "paddle/fluid/inference/tests/api/analyzer_ernie_tester.h"
G
GaoWei8 已提交
16 17 18 19

namespace paddle {
namespace inference {

20 21 22 23 24
/*
 * this model is unreasonable, it set a middle-tensor persistable, so
 * ridiculous! so I disable constant_folding_pass
 */

G
GaoWei8 已提交
25 26 27 28
using paddle::PaddleTensor;

void profile(bool use_mkldnn = false, bool use_gpu = false) {
  AnalysisConfig config;
Z
Zuza 已提交
29

G
GaoWei8 已提交
30
  SetConfig(&config, use_mkldnn, use_gpu);
31 32
  auto pass_builder = config.pass_builder();
  pass_builder->DeletePass("constant_folding_pass");
G
GaoWei8 已提交
33 34 35 36
  std::vector<std::vector<PaddleTensor>> outputs;
  std::vector<std::vector<PaddleTensor>> inputs;
  LoadInputData(&inputs);
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&config),
37 38 39
                 inputs,
                 &outputs,
                 FLAGS_num_threads);
G
GaoWei8 已提交
40 41 42 43 44 45 46 47
}

TEST(Analyzer_ernie, profile) { profile(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_ernie, profile_mkldnn) { profile(true, false); }
#endif

// Check the model by gpu
48
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
G
GaoWei8 已提交
49 50 51 52 53 54 55 56
TEST(Analyzer_ernie, profile_gpu) { profile(false, true); }
#endif

// Check the fuse status
TEST(Analyzer_Ernie, fuse_statis) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

57 58 59
  auto pass_builder = cfg.pass_builder();
  pass_builder->DeletePass("constant_folding_pass");

G
GaoWei8 已提交
60 61 62 63 64 65
  int num_ops;
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  auto fuse_statis = GetFuseStatis(
      static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
  LOG(INFO) << "num_ops: " << num_ops;
66 67 68 69 70 71 72
  if (FLAGS_ernie_large) {
    ASSERT_EQ(fuse_statis.at("fc_fuse"), 146);
    EXPECT_EQ(num_ops, 859);
  } else {
    ASSERT_EQ(fuse_statis.at("fc_fuse"), 74);
    EXPECT_EQ(num_ops, 295);
  }
G
GaoWei8 已提交
73 74 75 76
}

// Compare result of NativeConfig and AnalysisConfig
void compare(bool use_mkldnn = false) {
Z
Zuza 已提交
77 78 79
  std::vector<std::vector<PaddleTensor>> inputs;
  LoadInputData(&inputs);

G
GaoWei8 已提交
80 81
  AnalysisConfig cfg;
  SetConfig(&cfg, use_mkldnn, false);
82 83
  auto pass_builder = cfg.pass_builder();
  pass_builder->DeletePass("constant_folding_pass");
G
GaoWei8 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), inputs);
}

TEST(Analyzer_ernie, compare) { compare(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_ernie, compare_mkldnn) { compare(true /* use_mkldnn */); }
#endif

// Compare Deterministic result
TEST(Analyzer_Ernie, compare_determine) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
97 98
  auto pass_builder = cfg.pass_builder();
  pass_builder->DeletePass("constant_folding_pass");
G
GaoWei8 已提交
99 100 101 102 103 104 105 106 107 108
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  LoadInputData(&input_slots_all);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       input_slots_all);
}

// Compare results
TEST(Analyzer_Ernie, compare_results) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
109 110
  auto pass_builder = cfg.pass_builder();
  pass_builder->DeletePass("constant_folding_pass");
G
GaoWei8 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  LoadInputData(&input_slots_all);

  std::ifstream fin(FLAGS_refer_result);
  std::string line;
  std::vector<float> ref;

  while (std::getline(fin, line)) {
    Split(line, ' ', &ref);
  }

  auto predictor = CreateTestPredictor(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
      FLAGS_use_analysis);

  std::vector<PaddleTensor> outputs;
  for (size_t i = 0; i < input_slots_all.size(); i++) {
    outputs.clear();
    predictor->Run(input_slots_all[i], &outputs);
    auto outputs_size = outputs.front().data.length() / (sizeof(float));
    for (size_t j = 0; j < outputs_size; ++j) {
      EXPECT_NEAR(ref[i * outputs_size + j],
                  static_cast<float *>(outputs[0].data.data())[j],
                  FLAGS_accuracy);
    }
  }
}

J
jianghaicheng 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
#ifdef PADDLE_WITH_IPU
// IPU: Compare Deterministic result
TEST(Analyzer_Ernie_ipu, ipu_compare_determine) {
  AnalysisConfig cfg;
  SetIpuConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  LoadInputData(&input_slots_all);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       input_slots_all);
}

// IPU: Compare results
TEST(Analyzer_Ernie_ipu, ipu_compare_results) {
  AnalysisConfig cfg;
  SetIpuConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  LoadInputData(&input_slots_all);

  std::ifstream fin(FLAGS_refer_result);
  std::string line;
  std::vector<float> ref;

  while (std::getline(fin, line)) {
    Split(line, ' ', &ref);
  }

  auto predictor = CreateTestPredictor(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
      FLAGS_use_analysis);

  std::vector<PaddleTensor> outputs;
  for (size_t i = 0; i < input_slots_all.size(); i++) {
    outputs.clear();
    predictor->Run(input_slots_all[i], &outputs);
    auto outputs_size = outputs.front().data.length() / (sizeof(float));
    for (size_t j = 0; j < outputs_size; ++j) {
      EXPECT_NEAR(ref[i * outputs_size + j],
                  static_cast<float *>(outputs[0].data.data())[j],
                  FLAGS_accuracy);
    }
  }
}
#endif

G
GaoWei8 已提交
185 186
}  // namespace inference
}  // namespace paddle