analyzer_ernie_tester.cc 5.0 KB
Newer Older
G
GaoWei8 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Z
Zuza 已提交
15
#include "paddle/fluid/inference/tests/api/analyzer_ernie_tester.h"
G
GaoWei8 已提交
16 17 18 19 20 21 22 23

namespace paddle {
namespace inference {

using paddle::PaddleTensor;

void profile(bool use_mkldnn = false, bool use_gpu = false) {
  AnalysisConfig config;
Z
Zuza 已提交
24

G
GaoWei8 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
  SetConfig(&config, use_mkldnn, use_gpu);

  std::vector<std::vector<PaddleTensor>> outputs;
  std::vector<std::vector<PaddleTensor>> inputs;
  LoadInputData(&inputs);
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&config),
                 inputs, &outputs, FLAGS_num_threads);
}

TEST(Analyzer_ernie, profile) { profile(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_ernie, profile_mkldnn) { profile(true, false); }
#endif

// Check the model by gpu
40
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
G
GaoWei8 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54
TEST(Analyzer_ernie, profile_gpu) { profile(false, true); }
#endif

// Check the fuse status
TEST(Analyzer_Ernie, fuse_statis) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  int num_ops;
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  auto fuse_statis = GetFuseStatis(
      static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
  LOG(INFO) << "num_ops: " << num_ops;
55 56 57 58 59 60 61
  if (FLAGS_ernie_large) {
    ASSERT_EQ(fuse_statis.at("fc_fuse"), 146);
    EXPECT_EQ(num_ops, 859);
  } else {
    ASSERT_EQ(fuse_statis.at("fc_fuse"), 74);
    EXPECT_EQ(num_ops, 295);
  }
G
GaoWei8 已提交
62 63 64 65
}

// Compare result of NativeConfig and AnalysisConfig
void compare(bool use_mkldnn = false) {
Z
Zuza 已提交
66 67 68
  std::vector<std::vector<PaddleTensor>> inputs;
  LoadInputData(&inputs);

G
GaoWei8 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
  AnalysisConfig cfg;
  SetConfig(&cfg, use_mkldnn, false);

  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), inputs);
}

TEST(Analyzer_ernie, compare) { compare(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_ernie, compare_mkldnn) { compare(true /* use_mkldnn */); }
#endif

// Compare Deterministic result
TEST(Analyzer_Ernie, compare_determine) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  LoadInputData(&input_slots_all);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       input_slots_all);
}

// Compare results
TEST(Analyzer_Ernie, compare_results) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  LoadInputData(&input_slots_all);

  std::ifstream fin(FLAGS_refer_result);
  std::string line;
  std::vector<float> ref;

  while (std::getline(fin, line)) {
    Split(line, ' ', &ref);
  }

  auto predictor = CreateTestPredictor(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
      FLAGS_use_analysis);

  std::vector<PaddleTensor> outputs;
  for (size_t i = 0; i < input_slots_all.size(); i++) {
    outputs.clear();
    predictor->Run(input_slots_all[i], &outputs);
    auto outputs_size = outputs.front().data.length() / (sizeof(float));
    for (size_t j = 0; j < outputs_size; ++j) {
      EXPECT_NEAR(ref[i * outputs_size + j],
                  static_cast<float *>(outputs[0].data.data())[j],
                  FLAGS_accuracy);
    }
  }
}

J
jianghaicheng 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
#ifdef PADDLE_WITH_IPU
// IPU: Compare Deterministic result
TEST(Analyzer_Ernie_ipu, ipu_compare_determine) {
  AnalysisConfig cfg;
  SetIpuConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  LoadInputData(&input_slots_all);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       input_slots_all);
}

// IPU: Compare results
TEST(Analyzer_Ernie_ipu, ipu_compare_results) {
  AnalysisConfig cfg;
  SetIpuConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  LoadInputData(&input_slots_all);

  std::ifstream fin(FLAGS_refer_result);
  std::string line;
  std::vector<float> ref;

  while (std::getline(fin, line)) {
    Split(line, ' ', &ref);
  }

  auto predictor = CreateTestPredictor(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
      FLAGS_use_analysis);

  std::vector<PaddleTensor> outputs;
  for (size_t i = 0; i < input_slots_all.size(); i++) {
    outputs.clear();
    predictor->Run(input_slots_all[i], &outputs);
    auto outputs_size = outputs.front().data.length() / (sizeof(float));
    for (size_t j = 0; j < outputs_size; ++j) {
      EXPECT_NEAR(ref[i * outputs_size + j],
                  static_cast<float *>(outputs[0].data.data())[j],
                  FLAGS_accuracy);
    }
  }
}
#endif

G
GaoWei8 已提交
171 172
}  // namespace inference
}  // namespace paddle