test_multinomial_op.py 10.1 KB
Newer Older
P
pangyoki 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle
import paddle.fluid as fluid
20
from paddle.fluid import core
P
pangyoki 已提交
21 22
from op_test import OpTest
import numpy as np
23
import os
P
pangyoki 已提交
24 25


P
pangyoki 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
def sample_output_one_dimension(out, dim):
    # count numbers of different categories
    sample_prob = np.zeros(dim).astype("float32")
    sample_index_prob = np.unique(out, return_counts=True)
    sample_prob[sample_index_prob[0]] = sample_index_prob[1]
    sample_prob /= sample_prob.sum()
    return sample_prob


def sample_output_two_dimension(out, shape):
    num_dist = shape[0]
    out_list = np.split(out, num_dist, axis=0)
    sample_prob = np.zeros(shape).astype("float32")
    for i in range(num_dist):
        sample_index_prob = np.unique(out_list[i], return_counts=True)
        sample_prob[i][sample_index_prob[0]] = sample_index_prob[1]
    sample_prob /= sample_prob.sum(axis=-1, keepdims=True)
    return sample_prob


P
pangyoki 已提交
46 47
class TestMultinomialOp(OpTest):
    def setUp(self):
48
        paddle.enable_static()
P
pangyoki 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62
        self.op_type = "multinomial"
        self.init_data()
        self.inputs = {"X": self.input_np}

    def init_data(self):
        # input probability is a vector, and replacement is True
        self.input_np = np.random.rand(4)
        self.outputs = {"Out": np.zeros(100000).astype("int64")}
        self.attrs = {"num_samples": 100000, "replacement": True}

    def test_check_output(self):
        self.check_output_customized(self.verify_output)

    def sample_output(self, out):
P
pangyoki 已提交
63
        return sample_output_one_dimension(out, 4)
P
pangyoki 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

    def verify_output(self, outs):
        # normalize the input to get the probability
        prob = self.input_np / self.input_np.sum(axis=-1, keepdims=True)
        sample_prob = self.sample_output(np.array(outs[0]))
        self.assertTrue(
            np.allclose(
                sample_prob, prob, rtol=0, atol=0.01),
            "sample_prob: " + str(sample_prob) + "\nprob: " + str(prob))


class TestMultinomialOp2(TestMultinomialOp):
    def init_data(self):
        # input probability is a matrix
        self.input_np = np.random.rand(3, 4)
        self.outputs = {"Out": np.zeros((3, 100000)).astype("int64")}
        self.attrs = {"num_samples": 100000, "replacement": True}

    def sample_output(self, out):
P
pangyoki 已提交
83
        return sample_output_two_dimension(out, [3, 4])
P
pangyoki 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104


class TestMultinomialOp3(TestMultinomialOp):
    def init_data(self):
        # replacement is False. number of samples must be less than number of categories.
        self.input_np = np.random.rand(1000)
        self.outputs = {"Out": np.zeros(100).astype("int64")}
        self.attrs = {"num_samples": 100, "replacement": False}

    def verify_output(self, outs):
        out = np.array(outs[0])
        unique_out = np.unique(out)
        self.assertEqual(
            len(unique_out), 100,
            "replacement is False. categories can't be sampled repeatedly")


class TestMultinomialApi(unittest.TestCase):
    def test_dygraph(self):
        # input probability is a vector, and replacement is True
        paddle.disable_static()
P
pangyoki 已提交
105 106
        x_numpy = np.random.rand(4)
        x = paddle.to_tensor(x_numpy)
P
pangyoki 已提交
107 108 109
        out = paddle.multinomial(x, num_samples=100000, replacement=True)
        paddle.enable_static()

P
pangyoki 已提交
110
        sample_prob = sample_output_one_dimension(out.numpy(), 4)
P
pangyoki 已提交
111 112 113 114 115 116 117 118 119
        prob = x_numpy / x_numpy.sum(axis=-1, keepdims=True)
        self.assertTrue(
            np.allclose(
                sample_prob, prob, rtol=0, atol=0.01),
            "sample_prob: " + str(sample_prob) + "\nprob: " + str(prob))

    def test_dygraph2(self):
        # input probability is a matrix, and replacement is True
        paddle.disable_static()
P
pangyoki 已提交
120 121
        x_numpy = np.random.rand(3, 4)
        x = paddle.to_tensor(x_numpy)
P
pangyoki 已提交
122 123
        out = paddle.multinomial(x, num_samples=100000, replacement=True)

P
pangyoki 已提交
124
        sample_prob = sample_output_two_dimension(out.numpy(), [3, 4])
P
pangyoki 已提交
125 126 127 128 129 130 131 132 133 134
        prob = x_numpy / x_numpy.sum(axis=-1, keepdims=True)
        self.assertTrue(
            np.allclose(
                sample_prob, prob, rtol=0, atol=0.01),
            "sample_prob: " + str(sample_prob) + "\nprob: " + str(prob))
        paddle.enable_static()

    def test_dygraph3(self):
        # replacement is False. number of samples must be less than number of categories.
        paddle.disable_static()
P
pangyoki 已提交
135 136
        x_numpy = np.random.rand(1000)
        x = paddle.to_tensor(x_numpy)
P
pangyoki 已提交
137 138 139 140 141 142 143 144
        out = paddle.multinomial(x, num_samples=100, replacement=False)

        unique_out = np.unique(out.numpy())
        self.assertEqual(
            len(unique_out), 100,
            "replacement is False. categories can't be sampled repeatedly")
        paddle.enable_static()

P
pangyoki 已提交
145 146 147 148 149 150 151 152
    def test_dygraph4(self):
        paddle.disable_static()
        logits = -1 * paddle.ones([2800])
        # Categorical.sample API will call multinomial op with replacement=True
        cat = paddle.distribution.Categorical(logits.exp())
        cat.sample([1])
        paddle.enable_static()

P
pangyoki 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    def test_static(self):
        paddle.enable_static()
        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            x = fluid.data('x', shape=[4], dtype='float32')
            out = paddle.multinomial(x, num_samples=100000, replacement=True)

            place = fluid.CPUPlace()
            if fluid.core.is_compiled_with_cuda():
                place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

        exe.run(startup_program)
        x_np = np.random.rand(4).astype('float32')
        out = exe.run(train_program, feed={'x': x_np}, fetch_list=[out])

P
pangyoki 已提交
170
        sample_prob = sample_output_one_dimension(out, 4)
P
pangyoki 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
        prob = x_np / x_np.sum(axis=-1, keepdims=True)
        self.assertTrue(
            np.allclose(
                sample_prob, prob, rtol=0, atol=0.01),
            "sample_prob: " + str(sample_prob) + "\nprob: " + str(prob))


class TestMultinomialAlias(unittest.TestCase):
    def test_alias(self):
        paddle.disable_static()
        x = paddle.rand([4])
        paddle.multinomial(x, num_samples=10, replacement=True)
        paddle.tensor.multinomial(x, num_samples=10, replacement=True)
        paddle.tensor.random.multinomial(x, num_samples=10, replacement=True)


187 188 189 190 191 192 193 194 195
class TestMultinomialError(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()

    def test_num_sample(self):
        def test_num_sample_less_than_0():
            x = paddle.rand([4])
            paddle.multinomial(x, num_samples=-2)

196
        self.assertRaises(ValueError, test_num_sample_less_than_0)
197 198 199 200 201 202

    def test_replacement_False(self):
        def test_samples_larger_than_categories():
            x = paddle.rand([4])
            paddle.multinomial(x, num_samples=5, replacement=False)

203
        self.assertRaises(ValueError, test_samples_larger_than_categories)
204 205 206 207 208 209

    def test_input_probs_dim(self):
        def test_dim_larger_than_2():
            x = paddle.rand([2, 3, 3])
            paddle.multinomial(x)

210
        self.assertRaises(ValueError, test_dim_larger_than_2)
211 212 213 214 215 216

        def test_dim_less_than_1():
            x_np = np.random.random([])
            x = paddle.to_tensor(x_np)
            paddle.multinomial(x)

217
        self.assertRaises(ValueError, test_dim_less_than_1)
218 219


220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
class TestRandomValue(unittest.TestCase):
    def test_fixed_random_number(self):
        # Test GPU Fixed random number, which is generated by 'curandStatePhilox4_32_10_t'
        if not paddle.is_compiled_with_cuda():
            return

        # Different GPU generatte different random value. Only test V100 here.
        if not "V100" in paddle.device.cuda.get_device_name():
            return

        print("Test Fixed Random number on V100 GPU------>")
        paddle.disable_static()
        paddle.set_device('gpu')
        paddle.seed(100)

        x = paddle.randint(0, 100, [1024, 10000]).astype('float32')
        y = paddle.multinomial(x, 1, replacement=False).numpy()
        self.assertEqual(np.sum(y), 5187793)
        self.assertEqual(np.mean(y), 5066.2041015625)
        expect = [9982, 1655, 4741, 1323, 9319, 3298, 6473, 7477, 2507, 2628]
        self.assertTrue(np.array_equal(y[100:110, :].flatten(), expect))

        y = paddle.multinomial(x, 5000, replacement=False).numpy()
        self.assertEqual(np.sum(y), 25603962316)
        self.assertEqual(np.mean(y), 5000.77388984375)
        expect = [7300, 6055, 8714, 5401, 7360, 161, 5035, 7002, 6788, 2916]
        self.assertTrue(np.array_equal(y[100, 1000:1010], expect))

        y = paddle.multinomial(x, 5000, replacement=False).numpy()
        self.assertEqual(np.sum(y), 25592855710)
        self.assertEqual(np.mean(y), 4998.604630859375)
        expect = [5700, 6567, 4399, 5688, 7472, 545, 6894, 526, 2124, 385]
        self.assertTrue(np.array_equal(y[300, 3000:3010], expect))

        y = paddle.multinomial(x, 20000, replacement=True).numpy()
        self.assertEqual(np.sum(y), 102371362581)
        self.assertEqual(np.mean(y), 4998.60168852539)
        self.assertEqual(np.std(y), 2886.316308500771)
        expect = [7630, 8235, 8445, 3275, 5580, 4591, 1331, 342, 1662, 7156]
        self.assertTrue(np.array_equal(y[100, 0:10], expect))

        y = paddle.multinomial(x, 20000, replacement=True).numpy()
        self.assertEqual(np.sum(y), 102400672117)
        self.assertEqual(np.mean(y), 5000.032818212891)
        self.assertEqual(np.std(y), 2886.913426124017)
        expect = [4159, 7849, 9305, 5759, 4422, 122, 345, 2897, 5200, 5911]
        self.assertTrue(np.array_equal(y[100, 0:10], expect))

        paddle.enable_static()


P
pangyoki 已提交
271 272
if __name__ == "__main__":
    unittest.main()