test_multinomial_op.py 7.6 KB
Newer Older
P
pangyoki 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle
import paddle.fluid as fluid
20
from paddle.fluid import core
P
pangyoki 已提交
21 22 23 24 25 26
from op_test import OpTest
import numpy as np


class TestMultinomialOp(OpTest):
    def setUp(self):
27
        paddle.enable_static()
P
pangyoki 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
        self.op_type = "multinomial"
        self.init_data()
        self.inputs = {"X": self.input_np}

    def init_data(self):
        # input probability is a vector, and replacement is True
        self.input_np = np.random.rand(4)
        self.outputs = {"Out": np.zeros(100000).astype("int64")}
        self.attrs = {"num_samples": 100000, "replacement": True}

    def test_check_output(self):
        self.check_output_customized(self.verify_output)

    def sample_output(self, out):
        # count numbers of different categories
        sample_prob = np.unique(out, return_counts=True)[1].astype("float32")
        sample_prob /= sample_prob.sum()
        return sample_prob

    def verify_output(self, outs):
        # normalize the input to get the probability
        prob = self.input_np / self.input_np.sum(axis=-1, keepdims=True)
        sample_prob = self.sample_output(np.array(outs[0]))
        self.assertTrue(
            np.allclose(
                sample_prob, prob, rtol=0, atol=0.01),
            "sample_prob: " + str(sample_prob) + "\nprob: " + str(prob))


class TestMultinomialOp2(TestMultinomialOp):
    def init_data(self):
        # input probability is a matrix
        self.input_np = np.random.rand(3, 4)
        self.outputs = {"Out": np.zeros((3, 100000)).astype("int64")}
        self.attrs = {"num_samples": 100000, "replacement": True}

    def sample_output(self, out):
        out_list = np.split(out, 3, axis=0)
        count_array = [0] * 3
        for i in range(3):
            count_array[i] = np.unique(
                out_list[i], return_counts=True)[1].astype("float32")
        sample_prob = np.stack(count_array, axis=0)
        sample_prob /= sample_prob.sum(axis=-1, keepdims=True)
        return sample_prob


class TestMultinomialOp3(TestMultinomialOp):
    def init_data(self):
        # replacement is False. number of samples must be less than number of categories.
        self.input_np = np.random.rand(1000)
        self.outputs = {"Out": np.zeros(100).astype("int64")}
        self.attrs = {"num_samples": 100, "replacement": False}

    def verify_output(self, outs):
        out = np.array(outs[0])
        unique_out = np.unique(out)
        self.assertEqual(
            len(unique_out), 100,
            "replacement is False. categories can't be sampled repeatedly")


class TestMultinomialApi(unittest.TestCase):
    def test_dygraph(self):
        # input probability is a vector, and replacement is True
        paddle.disable_static()
        x = paddle.rand([4])
        out = paddle.multinomial(x, num_samples=100000, replacement=True)
        x_numpy = x.numpy()
        paddle.enable_static()

        sample_prob = np.unique(
            out.numpy(), return_counts=True)[1].astype("float32")
        sample_prob /= sample_prob.sum()

        prob = x_numpy / x_numpy.sum(axis=-1, keepdims=True)
        self.assertTrue(
            np.allclose(
                sample_prob, prob, rtol=0, atol=0.01),
            "sample_prob: " + str(sample_prob) + "\nprob: " + str(prob))

    def test_dygraph2(self):
        # input probability is a matrix, and replacement is True
        paddle.disable_static()
        x = paddle.rand([3, 4])
        out = paddle.multinomial(x, num_samples=100000, replacement=True)
        x_numpy = x.numpy()

        out_list = np.split(out.numpy(), 3, axis=0)
        count_array = [0] * 3
        for i in range(3):
            count_array[i] = np.unique(
                out_list[i], return_counts=True)[1].astype("float32")
        sample_prob = np.stack(count_array, axis=0)
        sample_prob /= sample_prob.sum(axis=-1, keepdims=True)

        prob = x_numpy / x_numpy.sum(axis=-1, keepdims=True)
        self.assertTrue(
            np.allclose(
                sample_prob, prob, rtol=0, atol=0.01),
            "sample_prob: " + str(sample_prob) + "\nprob: " + str(prob))
        paddle.enable_static()

    def test_dygraph3(self):
        # replacement is False. number of samples must be less than number of categories.
        paddle.disable_static()
        x = paddle.rand([1000])
        out = paddle.multinomial(x, num_samples=100, replacement=False)
        x_numpy = x.numpy()

        unique_out = np.unique(out.numpy())
        self.assertEqual(
            len(unique_out), 100,
            "replacement is False. categories can't be sampled repeatedly")
        paddle.enable_static()

    def test_static(self):
        paddle.enable_static()
        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            x = fluid.data('x', shape=[4], dtype='float32')
            out = paddle.multinomial(x, num_samples=100000, replacement=True)

            place = fluid.CPUPlace()
            if fluid.core.is_compiled_with_cuda():
                place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

        exe.run(startup_program)
        x_np = np.random.rand(4).astype('float32')
        out = exe.run(train_program, feed={'x': x_np}, fetch_list=[out])

        sample_prob = np.unique(out, return_counts=True)[1].astype("float32")
        sample_prob /= sample_prob.sum()

        prob = x_np / x_np.sum(axis=-1, keepdims=True)
        self.assertTrue(
            np.allclose(
                sample_prob, prob, rtol=0, atol=0.01),
            "sample_prob: " + str(sample_prob) + "\nprob: " + str(prob))


class TestMultinomialAlias(unittest.TestCase):
    def test_alias(self):
        paddle.disable_static()
        x = paddle.rand([4])
        paddle.multinomial(x, num_samples=10, replacement=True)
        paddle.tensor.multinomial(x, num_samples=10, replacement=True)
        paddle.tensor.random.multinomial(x, num_samples=10, replacement=True)


180 181 182 183 184 185 186 187 188
class TestMultinomialError(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()

    def test_num_sample(self):
        def test_num_sample_less_than_0():
            x = paddle.rand([4])
            paddle.multinomial(x, num_samples=-2)

189
        self.assertRaises(ValueError, test_num_sample_less_than_0)
190 191 192 193 194 195

    def test_replacement_False(self):
        def test_samples_larger_than_categories():
            x = paddle.rand([4])
            paddle.multinomial(x, num_samples=5, replacement=False)

196
        self.assertRaises(ValueError, test_samples_larger_than_categories)
197 198 199 200 201 202

    def test_input_probs_dim(self):
        def test_dim_larger_than_2():
            x = paddle.rand([2, 3, 3])
            paddle.multinomial(x)

203
        self.assertRaises(ValueError, test_dim_larger_than_2)
204 205 206 207 208 209

        def test_dim_less_than_1():
            x_np = np.random.random([])
            x = paddle.to_tensor(x_np)
            paddle.multinomial(x)

210
        self.assertRaises(ValueError, test_dim_less_than_1)
211 212


P
pangyoki 已提交
213 214
if __name__ == "__main__":
    unittest.main()