io.py 53.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
T
bug fix  
tangwei12 已提交
16
import errno
T
tangwei12 已提交
17 18
import time
import shutil
19

20
from paddle.fluid.evaluator import Evaluator
21
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable
K
fix bug  
Kexin Zhao 已提交
22
from . import core
23 24

__all__ = [
T
tangwei12 已提交
25 26
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
    'load_persistables', 'save_inference_model', 'load_inference_model',
T
tangwei12 已提交
27
    'get_inference_program', 'save_checkpoint', 'load_checkpoint',
T
tangwei12 已提交
28
    'clean_checkpoint'
29 30 31 32
]


def is_parameter(var):
F
fengjiayi 已提交
33 34
    """
    Check whether the given variable is an instance of Parameter.
35 36

    Args:
F
fengjiayi 已提交
37
        var(Variable): The variable to be checked.
38 39

    Returns:
F
fengjiayi 已提交
40 41 42 43 44 45 46 47
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
48
    """
49 50 51 52
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_persistable(param)
    """
69
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
Refine  
Yu Yang 已提交
70
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST:
71
        return False
72 73 74 75 76 77 78 79
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
80
        dtype=var.dtype,
81 82 83 84 85
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


86 87 88 89 90
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
91
              filename=None):
92
    """
F
fengjiayi 已提交
93 94 95 96 97 98 99
    Save variables to the given directory by executor.

    There are two ways to specify variables to be saved: The first way, list 
    variables in a list and assign it to the `vars`. The second way, assign the 
    `main_program` with an existing program, then all variables in the program 
    will be saved. The first way has a higher priority. In other words, if `vars` 
    are assigned, the `main_program` and the `predicate` will be ignored.
100

F
fengjiayi 已提交
101 102 103 104
    The `dirname` are used to specify the folder where to save variables. 
    If you prefer to save variables in separate files in the folder `dirname`, 
    set `filename` None; if you prefer to save all variables in a single file, 
    use `filename` to specify it.
105

F
fengjiayi 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
        main_program(Program|None): The program whose variables will be saved. 
                                    If it is None, the default main program will 
                                    be used automatically.
                                    Default: None
        vars(list[Variable]|None): The list that contains all variables to save. 
                                   It has a higher priority than the `main_program`.
                                   Default: None
        predicate(function|None): If it is not None, only variables in the 
                                  `main_program` that makes predicate(variable)==True 
                                  will be saved. It only works when we are using the 
                                  `main_program` to specify variables (In other words 
                                  `vars` is None).
                                  Default: None
        filename(str|None): The file which to save all variables. If you prefer to save 
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res

            prog = fluid.default_main_program()
            fluid.io.save_vars(executor=exe, dirname=path, main_program=prog,
                               vars=None)
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list, 
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
            # saved in the same file named 'var_file' in the path "./my_paddle_model".
156 157
    """
    if vars is None:
158
        if main_program is None:
Y
Yu Yang 已提交
159
            main_program = default_main_program()
160
        if not isinstance(main_program, Program):
161 162 163 164 165
            raise TypeError("program should be as Program type or None")

        save_vars(
            executor,
            dirname=dirname,
166
            vars=filter(predicate, main_program.list_vars()),
167
            filename=filename)
168 169 170
    else:
        save_program = Program()
        save_block = save_program.global_block()
171 172

        save_var_map = {}
173
        for each_var in vars:
174 175 176
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
177
            new_var = _clone_var_in_block_(save_block, each_var)
178
            if filename is None:
179 180 181 182 183 184 185 186
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                save_var_map[new_var.name] = new_var

187
        if filename is not None:
188 189 190 191
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

192
            save_block.append_op(
193 194
                type='save_combine',
                inputs={'X': save_var_list},
195
                outputs={},
196
                attrs={'file_path': os.path.join(dirname, filename)})
197

198 199 200
        executor.run(save_program)


201
def save_params(executor, dirname, main_program=None, filename=None):
202
    """
F
fengjiayi 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

    Use the `dirname` to specify the saving folder. If you would like to 
    save parameters in separate files, set `filename` None; if you would 
    like to save all parameters in a single file, use `filename` to specify 
    the file name.

    NOTICE: Some variables are not Parameter while they are necessary for 
    training. So you can NOT save and continue your training just by 
    `save_params()` and `load_params()`. Please use `save_persistables()` 
    and `load_persistables()` instead.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
        filename(str|None): The file to save all parameters. If you prefer 
                            to save parameters in differnet files, set it 
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            fluid.io.save_params(executor=exe, dirname=param_path, 
                                 main_program=None)
239 240 241 242
    """
    save_vars(
        executor,
        dirname=dirname,
243
        main_program=main_program,
244
        vars=None,
245
        predicate=is_parameter,
246
        filename=filename)
247 248


249
def save_persistables(executor, dirname, main_program=None, filename=None):
250
    """
F
fengjiayi 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
    This function filters out all variables with `persistable==True` from the 
    give `main_program` and then saves these variables to the folder `dirname` 
    or file `filename`.

    The `dirname` is used to specify the folder where persistable variables 
    are going to be saved. If you would like to save variables in separate 
    files, set `filename` None; if you would like to save all variables in a 
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
        main_program(Program|None): The program whose persistbale variables will 
                                    be saved. If it is None, the default main 
                                    program will be used automatically.
                                    Default: None
        filename(str|None): The file to saved all variables. If you prefer to 
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            fluid.io.save_persistables(executor=exe, dirname=param_path, 
                                       main_program=None)
282 283 284 285
    """
    save_vars(
        executor,
        dirname=dirname,
286
        main_program=main_program,
287
        vars=None,
288
        predicate=is_persistable,
289
        filename=filename)
290 291


292 293 294 295 296
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
297
              filename=None):
298
    """
F
fengjiayi 已提交
299 300 301 302 303 304 305 306 307 308 309 310
    Load variables from the given directory by executor.

    There are two ways to specify variables to be loaded: The first way, list 
    variables in a list and assign it to the `vars`. The second way, assign the 
    `main_program` with an existing program, then all variables in the program 
    will be loaded. The first way has a higher priority. In other words if `vars` 
    are assigned, the `main_program` and the `predicate` will be ignored.

    The `dirname` are used to specify the folder where to load variables. 
    If variables were saved in separate files in the folder `dirname`, 
    set `filename` None; if all variables were saved in a single file, 
    use `filename` to specify it.
311

F
fengjiayi 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
        main_program(Program|None): The program whose variables will be loaded. 
                                    If it is None, the default main program will 
                                    be used automatically.
                                    Default: None
        vars(list[Variable]|None): The list that contains all variables to load. 
                                   It has a higher priority than the `main_program`.
                                   Default: None
        predicate(function|None): If it is not None, only variables in the 
                                  `main_program` that makes predicate(variable)==True 
                                  will be loaded. It only works when we are using the 
                                  `main_program` to specify variables (In other words 
                                  `vars` is None).
                                  Default: None
        filename(str|None): The file which saved all required variables. If variables 
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
348

F
fengjiayi 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361
            prog = fluid.default_main_program()
            fluid.io.load_vars(executor=exe, dirname=path, main_program=prog,
                               vars=None)
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list, 
                               filename="vars_file")
            # var_a, var_b and var_c will be loaded. And they are supposed to haven 
            # been saved in the same file named 'var_file' in the path "./my_paddle_model".
362 363
    """
    if vars is None:
364
        if main_program is None:
Y
Yu Yang 已提交
365
            main_program = default_main_program()
366
        if not isinstance(main_program, Program):
367 368 369 370 371
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
            dirname=dirname,
372
            vars=filter(predicate, main_program.list_vars()),
373
            filename=filename)
374 375 376
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
377 378

        load_var_map = {}
379 380
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
381 382
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
383
            new_var = _clone_var_in_block_(load_block, each_var)
384
            if filename is None:
385 386 387 388 389 390 391 392
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                load_var_map[new_var.name] = new_var

393
        if filename is not None:
394 395 396 397
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

398
            load_block.append_op(
399
                type='load_combine',
400
                inputs={},
401
                outputs={"Out": load_var_list},
402
                attrs={'file_path': os.path.join(dirname, filename)})
403

404 405 406
        executor.run(load_prog)


407
def load_params(executor, dirname, main_program=None, filename=None):
408
    """
F
fengjiayi 已提交
409
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
410
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
    the file `filename`.

    Use the `dirname` to specify the folder where parameters were saved. If 
    parameters were saved in separate files in the folder `dirname`, set 
    `filename` None; if all parameters were saved in a single file, use 
    `filename` to specify the file name.

    NOTICE: Some variables are not Parameter while they are necessary for 
    training. So you can NOT save and continue your training just by 
    `save_params()` and `load_params()`. Please use `save_persistables()` 
    and `load_persistables()` instead. 

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
        filename(str|None): The file which saved all parameters. If parameters 
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            fluid.io.load_params(executor=exe, dirname=param_path, 
                                main_program=None)
445 446
    """
    load_vars(
447 448 449
        executor,
        dirname=dirname,
        main_program=main_program,
450
        predicate=is_parameter,
451
        filename=filename)
452 453


454
def load_persistables(executor, dirname, main_program=None, filename=None):
455
    """
F
fengjiayi 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
    This function filters out all variables with `persistable==True` from the 
    give `main_program` and then trys to load these variables from the folder 
    `dirname` or the file `filename`.

    Use the `dirname` to specify the folder where persistable variables were 
    saved. If variables were saved in separate files, set `filename` None; 
    if all variables were saved in a single file, use `filename` to specify 
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
        main_program(Program|None): The program whose persistbale variables will 
                                    be loaded. If it is None, the default main 
                                    program will be used automatically.
                                    Default: None
        filename(str|None): The file which saved all variables. If variables were 
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            fluid.io.load_persistables(executor=exe, dirname=param_path, 
                                       main_program=None)
487 488
    """
    load_vars(
489 490 491
        executor,
        dirname=dirname,
        main_program=main_program,
492
        predicate=is_persistable,
493
        filename=filename)
494 495


496 497
def get_inference_program(target_vars, main_program=None):
    if main_program is None:
Y
Yu Yang 已提交
498
        main_program = default_main_program()
499 500
    if not isinstance(target_vars, list):
        target_vars = [target_vars]
W
wanghaoshuang 已提交
501 502 503
    vars = []
    for var in target_vars:
        if isinstance(var, Evaluator):
W
wanghaoshuang 已提交
504 505
            vars.extend(var.states)
            vars.extend(var.metrics)
W
wanghaoshuang 已提交
506 507 508
        else:
            vars.append(var)
    pruned_program = main_program.prune(targets=vars)
509 510 511 512
    inference_program = pruned_program.inference_optimize()
    return inference_program


513 514 515
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
516 517 518
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
519 520
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
521 522 523
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
524

525
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
526
        out = global_block.var(name)
K
Kexin Zhao 已提交
527 528 529
        global_block.prepend_op(
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
530
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
531 532 533
            attrs={'col': i})


534 535 536
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
537 538
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
539 540 541
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
542

543
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
544 545 546 547 548 549 550
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


551 552 553 554
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
555
                         main_program=None,
556 557
                         model_filename=None,
                         params_filename=None):
558
    """
F
fengjiayi 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.

    Args:
        dirname(str): The directory path to save the inference model.
        feeded_var_names(list[str]): Names of variables that need to be feeded data 
                                     during inference.
        target_vars(list[Variable]): Variables from which we can get inference 
                                     results.
        executor(Executor): The executor that saves the inference model.
        main_program(Program|None): The original program, which will be pruned to 
                                    build the inference model. If is setted None, 
                                    the default main program will be used.
                                    Default: None.
        model_filename(str|None): The name of file to save the inference program 
                                  itself. If is setted None, a default filename 
                                  `__model__` will be used.
        params_filename(str|None): The name of file to save all related parameters. 
                                   If it is setted None, parameters will be saved 
                                   in separate files .
579

F
fengjiayi 已提交
580 581 582 583 584 585 586 587 588
    Returns:
        None

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
589

F
fengjiayi 已提交
590 591 592 593 594 595 596 597 598 599
            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[predict_var], executor=exe)

            # In this exsample, the function will prune the default main program 
            # to make it suitable for infering the `predict_var`. The pruned 
            # inference program is going to be saved in the "./infer_model/__model__" 
            # and parameters are going to be saved in separate files under folder
            # "./infer_model". 
600 601

    """
F
fengjiayi 已提交
602 603 604
    if isinstance(feeded_var_names, basestring):
        feeded_var_names = [feeded_var_names]
    else:
Q
Qiao Longfei 已提交
605 606 607 608
        if len(feeded_var_names) > 0:
            if not (bool(feeded_var_names) and all(
                    isinstance(name, basestring) for name in feeded_var_names)):
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
609 610

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
611
        target_vars = [target_vars]
F
fengjiayi 已提交
612 613 614 615 616
    else:
        if not (bool(target_vars) and all(
                isinstance(var, Variable) for var in target_vars)):
            raise ValueError("'target_vars' should be a list of Variable.")

617
    if main_program is None:
Y
Yu Yang 已提交
618
        main_program = default_main_program()
619
    copy_program = main_program.clone()
620 621 622 623

    if not os.path.isdir(dirname):
        os.makedirs(dirname)

624
    # Clear the is_target information and remove the existed feed and fetch op
625
    global_block = copy_program.global_block()
626 627 628 629
    for i, op in enumerate(global_block.ops):
        op.desc.set_is_target(False)
        if op.type == "feed" or op.type == "fetch":
            global_block.remove_op(i)
630
    copy_program.desc.flush()
631

632
    pruned_program = copy_program.prune(targets=target_vars)
633
    inference_program = pruned_program.inference_optimize()
634 635
    fetch_var_names = [v.name for v in target_vars]

K
Kexin Zhao 已提交
636 637
    prepend_feed_ops(inference_program, feeded_var_names)
    append_fetch_ops(inference_program, fetch_var_names)
638

639 640
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
641
    else:
642 643
        model_filename = "__model__"
    model_filename = os.path.join(dirname, model_filename)
644

645 646 647 648
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)

    with open(model_filename, "wb") as f:
649
        f.write(inference_program.desc.serialize_to_string())
650

651
    save_persistables(executor, dirname, inference_program, params_filename)
652 653


654 655 656 657
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
                         params_filename=None):
658 659 660
    """
    Load inference model from a directory

F
fengjiayi 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
                                  If it is None, the default filename 
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
                                   It is only used for the case that all 
                                   parameters were saved in a single binary 
                                   file. If parameters were saved in separate 
                                   files, set it as 'None'.

    Returns:
        tuple: The return of this function is a tuple with three elements:
        (program, feed_target_names, fetch_targets). The `program` is a 
        Program, it's the program for inference. The `feed_target_names` is 
        a list of str, it contains Names of variables that need to feed 
        data in the inference program. The `fetch_targets` is a list of 
        Variable. It contains variables from which we can get inference 
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
            [inference_program, feed_target_names, fetch_targets] = 
                fluid.io.load_inference_model(dirname=path, executor=exe)
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

F
fengjiayi 已提交
697
            # In this exsample, the inference program was saved in the 
F
fengjiayi 已提交
698 699 700 701 702
            # "./infer_model/__model__" and parameters were saved in 
            # separate files in ""./infer_model". 
            # After getting inference program, feed target names and 
            # fetch targets, we can use an Executor to run the inference 
            # program to get the inference result.
703

704 705 706 707
    """
    if not os.path.isdir(dirname):
        raise ValueError("There is no directory named '%s'", dirname)

708 709
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
710
    else:
711 712 713 714 715
        model_filename = "__model__"
    model_filename = os.path.join(dirname, model_filename)

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
716

717
    with open(model_filename, "rb") as f:
718 719
        program_desc_str = f.read()

720
    program = Program.parse_from_string(program_desc_str)
721
    load_persistables(executor, dirname, program, params_filename)
722

723 724
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
725 726 727 728 729
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
730 731 732 733


def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
734 735 736 737 738 739 740 741 742 743 744
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
745

F
fengjiayi 已提交
746 747
    Examples:
        .. code-block:: python
X
xuwei06 已提交
748

F
fengjiayi 已提交
749 750 751
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
752

X
xuwei06 已提交
753
    """
X
xuwei06 已提交
754 755
    assert is_parameter(para)

X
xuwei06 已提交
756 757 758 759 760 761 762 763
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
764
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
765

F
fengjiayi 已提交
766 767 768 769 770 771 772
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
773

F
fengjiayi 已提交
774 775
    Returns:
        numpy.array: The parameter's values.
776

F
fengjiayi 已提交
777 778 779 780 781
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
782

F
fengjiayi 已提交
783 784 785 786 787
    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
788 789
    """
    if program is None:
Y
Yu Yang 已提交
790
        program = default_main_program()
X
xuwei06 已提交
791 792
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
T
tangwei12 已提交
793 794


T
tangwei12 已提交
795
SUCCESS_MARK_FILENAME = "_SUCCESS"
796
CHECKPOINT_PREFIX = "checkpoint"
T
tangwei12 已提交
797
MODEL_DIR = "__model__"
798
LOOKUP_TABLE_DIR = "__lookup_table__"
T
tangwei12 已提交
799
TRAINER_PREFIX = "trainer"
800
CHECKPOINT_SEPARATOR = "_"
T
tangwei12 已提交
801 802 803


def save_checkpoint(executor,
T
tangwei12 已提交
804
                    checkpoint_dir,
T
tangwei12 已提交
805
                    trainer_id,
T
tangwei12 已提交
806
                    main_program,
T
tangwei12 已提交
807
                    trainer_args=None,
T
tangwei12 已提交
808 809
                    max_num_checkpoints=3,
                    lookup_table=None,
T
tangwei12 已提交
810
                    pserver_endpoints=None):
T
tangwei12 已提交
811
    """
F
fengjiayi 已提交
812
    This function filters out all checkpoint variables from the give
F
fengjiayi 已提交
813
    main_program and then saves these variables to the `checkpoint_dir` 
F
fengjiayi 已提交
814 815 816 817
    directory.

    In the training precess, we generally save a checkpoint in each
    iteration. So there might be a lot of checkpoints in the 
F
fengjiayi 已提交
818
    `checkpoint_dir`. To avoid them taking too much disk space, the 
F
fengjiayi 已提交
819 820
    `max_num_checkpoints` are introduced to limit the total number of 
    checkpoints. If the number of existing checkpints is greater than 
F
fengjiayi 已提交
821
    the `max_num_checkpoints`, oldest ones will be scroll deleted.
F
fengjiayi 已提交
822

F
fengjiayi 已提交
823 824
    A variable is a checkpoint variable and will be saved if it meets
    all following conditions:
F
fengjiayi 已提交
825 826 827
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".
T
tangwei12 已提交
828

F
fengjiayi 已提交
829 830 831 832 833 834 835 836
    Args:
        executor(Executor): The executor to run for save checkpoint.
        checkpoint_dir(str): The folder where to save checkpoints.
        trainer_id(int): currect trainer id, if id is equal to 0, the trainer 
            is chief.
        trainer_args(dict|None): Current training arguments. Such as 'epoch_id' 
            and 'step_id'.
            Defaut: None
T
tangwei12 已提交
837 838
        main_program(Program): The program whose checkpoint variables will
            be saved.
F
fengjiayi 已提交
839 840 841
        max_num_checkpoints(int): The max number of total number of existing 
            checkpoints.
            Default: 3
T
tangwei12 已提交
842 843 844
        lookup_table(string|None): the lookup table name, when use distribute
            lookup table, we can get lookup table name by DistributeTranspiler.
            table_name 
T
tangwei12 已提交
845 846
        pserver_endpoints(list|None): the parameter server ip:port list.  
            when use distribute lookup table, we can get pserver_endpoints by 
T
tangwei12 已提交
847
            distribute arguments.
F
fengjiayi 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863

    Returns:
        None

    Raises:
        ValueError: If `checkpoint_dir` is None.
        AssertionError: If `trainer_args` is not a dict.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./checkpoints"
            prog = fluid.default_main_program()
            trainer_args = {"epoch_id": 200,
                            "step_id": 20} # just an example
T
tangwei12 已提交
864 865 866
            table_name = "share_w"
            ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]

F
fengjiayi 已提交
867 868 869 870 871
            fluid.io.save_checkpoint(executor=exe,
                                     checkpoint_dir=path,
                                     trainer_id=0,
                                     trainer_args=trainer_args,
                                     main_program=prog,
T
tangwei12 已提交
872 873
                                     max_num_checkpoints=3,
                                     lookup_table=table_name,
T
tangwei12 已提交
874
                                     pserver_endpoints = ps_endpoints)
T
tangwei12 已提交
875 876
    """
    if checkpoint_dir is None:
T
tangwei12 已提交
877
        raise ValueError("'checkpoint_dir' should not be None")
T
tangwei12 已提交
878 879 880

    if main_program is None:
        raise ValueError('main_program should not be None.')
T
tangwei12 已提交
881

T
tangwei12 已提交
882 883
    if trainer_args:
        assert isinstance(trainer_args, dict)
T
tangwei12 已提交
884

T
bug fix  
tangwei12 已提交
885 886
    is_chief = trainer_id == 0

T
bug fix  
tangwei12 已提交
887
    _make_chekcpoint_dirs(checkpoint_dir)
T
tangwei12 已提交
888
    serial = _get_latest_checkpoint_serial(checkpoint_dir) + 1
T
tangwei12 已提交
889
    cur_dir = _get_serial_dir(checkpoint_dir, serial)
T
tangwei12 已提交
890

T
tangwei12 已提交
891
    _save_trainer_args(cur_dir, trainer_id, trainer_args)
T
tangwei12 已提交
892

T
bug fix  
tangwei12 已提交
893
    if is_chief:
T
tangwei12 已提交
894
        _save_persist_vars_without_grad(executor, cur_dir, main_program)
T
tangwei12 已提交
895

T
tangwei12 已提交
896 897 898
    if is_chief and lookup_table and pserver_endpoints:
        _save_pserver_vars_by_notify(executor, cur_dir, lookup_table,
                                     pserver_endpoints)
T
tangwei12 已提交
899

T
tangwei12 已提交
900
    _scroll_delete(checkpoint_dir, max_num_checkpoints)
T
tangwei12 已提交
901 902


T
tangwei12 已提交
903 904 905 906 907 908 909
def load_checkpoint(executor,
                    checkpoint_dir,
                    main_program,
                    role_id=0,
                    is_trainer=True,
                    load_trainer_args=None,
                    load_lookup_table=None):
T
tangwei12 已提交
910
    """
F
fengjiayi 已提交
911 912
    This function filters out all checkpoint variables from the give
    main_program and then try to load these variables from the
F
fengjiayi 已提交
913
    `checkpoint_dir` directory.
F
fengjiayi 已提交
914 915

    In the training precess, we generally save a checkpoint in each
F
fengjiayi 已提交
916 917
    iteration. So there are more than one checkpoint in the 
    `checkpoint_dir` (each checkpoint has its own sub folder), use 
F
fengjiayi 已提交
918
    `serial` to specify which serial of checkpoint you would like to
F
fengjiayi 已提交
919 920 921
    load.

    A variable is a checkpoint variable and will be loaded if it meets
F
fengjiayi 已提交
922
    all following conditions:
F
fengjiayi 已提交
923 924 925 926 927 928 929 930 931 932
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".

    Args:
        executor(Executor): The executor to run for loading checkpoint.
        checkpoint_dir(str): The folder where all checkpoints are.
        serial(int): The serial of checkpoint you would like to load.
        main_program(Program): The program whose checkpoint variables will
                               be loaded.
T
tangwei12 已提交
933 934 935 936
        role_id(int):  the trainer id or the parameter server id.
        is_trainer(bool): trainer is True and parameter server is False.
        load_trainer_args(list|None): list about load trainer args.
        load_lookup_table(str|None): the lookup table name
T
tangwei12 已提交
937

F
fengjiayi 已提交
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
    Returns:
        None

    Raises:
        ValueError: If `checkpoint_dir` is None.
        ValueError: If `main_program` is None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./checkpoints"
            prog = fluid.default_main_program()
            fluid.io.load_checkpoint(executor=exe, checkpoint_dir=path,
                    serial=9, main_program=prog)

            # In this example, `load_checkpoint` function
            # will first filters out all checkpoint variables in the default
            # main program, and then try to load these variables form the
            # folder "./checkpoints/checkpoint_9/__model__".
T
tangwei12 已提交
958
    """
T
tangwei12 已提交
959

T
tangwei12 已提交
960
    if checkpoint_dir is None:
T
tangwei12 已提交
961
        raise ValueError("'checkpoint_dir' should not be None")
T
tangwei12 已提交
962

T
tangwei12 已提交
963 964 965
    serial = _get_latest_checkpoint_serial(checkpoint_dir)

    # there are nothing  need to be loaded
T
tangwei12 已提交
966
    if serial is None or serial < 0:
T
tangwei12 已提交
967
        return
T
tangwei12 已提交
968

T
tangwei12 已提交
969
    if main_program is None:
T
tangwei12 已提交
970
        raise ValueError('main_program should not be None.')
971

T
tangwei12 已提交
972 973 974 975 976 977 978 979 980 981 982 983
    if is_trainer and load_trainer_args is None:
        cur_dir = _get_serial_dir(checkpoint_dir, serial)
        _load_persist_vars_without_grad(executor, cur_dir, main_program, True)
        return

    if is_trainer and load_trainer_args:
        return _load_trainer_args(checkpoint_dir, serial, role_id,
                                  load_trainer_args)

    if not is_trainer and load_lookup_table:
        _load_lookup_table_vars(executor, checkpoint_dir, main_program, role_id,
                                load_lookup_table)
T
tangwei12 已提交
984 985


T
tangwei12 已提交
986 987
def clean_checkpoint(checkpoint_dir, delete_dir=False):
    """
T
tangwei12 已提交
988 989
    clean the checkpoint dir, when the train exits normally, 
    the trainer will call clean_checkpoint to delete checkpoint directory saved before.
T
tangwei12 已提交
990
    delete_dir only works when the directory is empty, otherwise, OSError is raised.  
991

F
fengjiayi 已提交
992 993
    : param checkpoint_dir
    : param delete_dir
T
tangwei12 已提交
994
    """
995

T
tangwei12 已提交
996
    if checkpoint_dir is None:
T
tangwei12 已提交
997
        raise ValueError("'checkpoint_dir' should not be None")
T
tangwei12 已提交
998
    _scroll_delete(checkpoint_dir, max_num_checkpoints=0)
T
tangwei12 已提交
999 1000 1001 1002 1003

    if delete_dir and not os.listdir(checkpoint_dir):
        os.rmdir(checkpoint_dir)


T
tangwei12 已提交
1004 1005 1006 1007
def _load_persist_vars_without_grad(executor,
                                    dirname,
                                    program,
                                    has_model_dir=False):
T
tangwei12 已提交
1008
    """
F
fengjiayi 已提交
1009
    This function filters out all checkpoint variables from the give
F
fengjiayi 已提交
1010
    program and then trys to load these variables from the given directory.
F
fengjiayi 已提交
1011

F
fengjiayi 已提交
1012
    A variable is a checkpoint variable if it meets all following
F
fengjiayi 已提交
1013 1014 1015 1016
    conditions:
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".
1017

F
fengjiayi 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
        program(Program): The program whose checkpoint variables will
                          be loaded.
        has_model_dir(bool): if True, the function loads variables
                             from a sub directory named '__model__'.
                             Default: False

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
T
tangwei12 已提交
1036
            fluid.io._load_persist_vars_without_grad(executor=exe,
F
fengjiayi 已提交
1037 1038
                    dirname=param_path, program=prog, has_model_dir=True)

T
tangwei12 已提交
1039
            # In this example, `_load_persist_vars_without_grad` function
F
fengjiayi 已提交
1040 1041 1042
            # will first filters out all checkpoint variables in the default
            # main program, and then trys to load these variables form the
            # folder "./my_paddle_model/__model__".
T
tangwei12 已提交
1043 1044
    """

T
tangwei12 已提交
1045
    if has_model_dir:
T
tangwei12 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
        dirname = _get_model_dir(dirname)

    load_vars(
        executor,
        dirname=dirname,
        main_program=program,
        predicate=_is_checkpoint_var,
        filename=None)


T
tangwei12 已提交
1056
def _load_lookup_table_vars(executor, dirname, program, pserver_id, table_name):
T
tangwei12 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
    """
    The parameter server will load lookup table's local file in 
    selectedrows variable.

    Args:
        executor(Executor): The executor to run for loading persistable variables
        dirname(str): The directory path
        main_program(Program): Find the variable named table_name in main_program
        pserver_id(int): the serial number in pserver_endpoints list
        table_name(str): lookup table name
T
tangwei12 已提交
1067

T
tangwei12 已提交
1068 1069 1070 1071 1072 1073 1074
    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
T
tangwei12 已提交
1075
            dirname = "./checkpoints/checkpoint_9/"
T
tangwei12 已提交
1076 1077 1078
            prog = fluid.default_main_program()
            pserver_id = 1
            table_name = "share_w"
T
tangwei12 已提交
1079
            fluid.io._load_lookup_table_vars(executor=exe,
T
tangwei12 已提交
1080 1081 1082
                    dirname=dirname, program=prog, pserver_id=pserver_id,
                    table_name=table_name)
    """
T
bug fix  
tangwei12 已提交
1083 1084 1085 1086 1087 1088 1089 1090

    for var in program.list_vars():
        if var.name == table_name:
            lookup_table_var = var
            break

    assert lookup_table_var is not None

1091
    lookup_table_dir = os.path.join(dirname, LOOKUP_TABLE_DIR)
T
bug fix  
tangwei12 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
    table_file = table_name + CHECKPOINT_SEPARATOR + str(pserver_id)

    load_prog = Program()
    load_block = load_prog.global_block()

    load_block.append_op(
        type='load',
        inputs={},
        outputs={'Out': [lookup_table_var]},
        attrs={'file_path': os.path.join(lookup_table_dir, table_file)})
1102

T
bug fix  
tangwei12 已提交
1103
    executor.run(load_prog)
1104 1105


T
tangwei12 已提交
1106
def _save_persist_vars_without_grad(executor, dirname, program):
T
tangwei12 已提交
1107
    """
F
fengjiayi 已提交
1108 1109 1110 1111
    This function filters out all checkpoint variables from the give
    program and then save these variables to a sub-folder '__model__' of 
    the given directory.

F
fengjiayi 已提交
1112
    A variable is a checkpoint variable if it meets all following
F
fengjiayi 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
    conditions:
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".

    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
        program(Program): The program whose checkpoint variables will
                          be saved.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
T
tangwei12 已提交
1133
            fluid.io._save_persist_vars_without_grad(executor=exe,
F
fengjiayi 已提交
1134
                    dirname=param_path, program=prog)
1135

T
tangwei12 已提交
1136
            # In this example, `_save_persist_vars_without_grad` function
F
fengjiayi 已提交
1137 1138 1139
            # will first filters out all checkpoint variables in the default
            # main program, and then saves these variables to the folder 
            # "./my_paddle_model/__model__".
T
tangwei12 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
    """
    cur_dir = _get_model_dir(dirname)
    save_vars(
        executor,
        dirname=cur_dir,
        main_program=program,
        vars=None,
        predicate=_is_checkpoint_var,
        filename=None)
    _write_success(cur_dir)


T
tangwei12 已提交
1152 1153
def _save_pserver_vars_by_notify(executor, dirname, lookup_table,
                                 ps_endpoint_list):
T
tangwei12 已提交
1154
    """
T
tangwei12 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
    This function will send checkpoint notify message from Trainer 0
    to all the pservers.
    The checkpoint notify message contains lookup table name, 
    the absolute path on pserver to save lookup_table.

    Args:
        executor(Executor): The executor to run for send checkpoint notify.
        dirname(str): The folder where to save checkpoints.
        lookup_table(string): the lookup table name, when use distribute
            lookup table, we can get lookup table name by DistributeTranspiler.
            table_name 
        ps_endpoint_list(list): the parameter server ip:port list.  
            when use distribute lookup table, we can get ps_endpoint_list by 
            distribute arguments.
    Return:
        None
    
    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            table_name = "share_w"
            ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]

T
tangwei12 已提交
1181
            fluid.io._save_pserver_vars_by_notify(executor=exe,
T
tangwei12 已提交
1182 1183
                    dirname=param_path, lookup_table=table_name, 
                    ps_endpoint_list=ps_endpoints)
T
tangwei12 已提交
1184 1185 1186 1187 1188 1189 1190
    """
    cur_dir = _get_lookuptable_dir(dirname)

    checkpoint_notify_program = Program()
    checkpoint_notify_block = checkpoint_notify_program.global_block()

    attrs = {}
T
tangwei12 已提交
1191
    attrs['epmap'] = ps_endpoint_list
T
tangwei12 已提交
1192
    attrs['dir'] = cur_dir
T
tangwei12 已提交
1193
    attrs['lookup_table'] = lookup_table
T
tangwei12 已提交
1194 1195

    checkpoint_notify_block.append_op(
T
tangwei12 已提交
1196
        type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
T
tangwei12 已提交
1197 1198 1199
    executor.run(checkpoint_notify_program)


T
tangwei12 已提交
1200
def _save_trainer_args(dirname, trainer_id, trainer_args):
T
tangwei12 已提交
1201 1202
    assert isinstance(trainer_args, dict)

T
tangwei12 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211
    cur_dir = _get_trainer_dir(dirname, trainer_id)

    for name, value in trainer_args.iteritems():
        args_file = os.path.join(cur_dir, name)
        with open(args_file, 'w') as f:
            f.write(str(value))
    _write_success(cur_dir)


T
tangwei12 已提交
1212
def _load_trainer_args(checkpoint_dir, serial, trainer_id, trainer_args):
T
tangwei12 已提交
1213
    """
T
tangwei12 已提交
1214
    trainer will load some args from it's independent directory, 
T
tangwei12 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
    such as epoch_id and step_id.

    Args:
        checkpoint_dir(str): The folder where all checkpoints are.
        serial(int): The serial of checkpoint you would like to load.
        trainer_id(int): current trainer id.
        trainer_args(list): list about load trainer args
    Return:
        None

    Examples:
        .. code-block:: python

            param_path = "./checkpoint/"
            serial = 7
            trainer_id = 2
            trainer_args = ["epoch_id", "step_id"]

T
tangwei12 已提交
1233
            fluid.io._load_trainer_args(checkpoint_dir=param_path, serial=serial,
T
tangwei12 已提交
1234 1235
            trainer_id=trainer_id, trainer_args=trainer_args)
    """
T
tangwei12 已提交
1236 1237
    assert isinstance(trainer_args, list)

T
tangwei12 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
    cur_dir = _get_serial_dir(checkpoint_dir, serial)
    cur_dir = _get_trainer_dir(cur_dir, trainer_id)

    ret_values = []

    for arg in trainer_args:
        cur_file = os.path.join(cur_dir, arg)
        with open(cur_file, 'r') as f:
            contents = f.read()
            ret_values.append(contents.strip())
    return ret_values


T
tangwei12 已提交
1251
def _is_checkpoint_var(var):
T
tangwei12 已提交
1252
    """
T
tangwei12 已提交
1253 1254 1255
    the checkpoint will not save or load all the variables.
    var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded.

T
tangwei12 已提交
1256
    : param var(Variable)
T
tangwei12 已提交
1257
    """
T
tangwei12 已提交
1258 1259 1260 1261
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.RAW:
        return False
T
tangwei12 已提交
1262
    # @GRAD are named for gradient variables, checkpoint will not save it.
T
tangwei12 已提交
1263 1264
    if "@GRAD" in var.name:
        return False
T
tangwei12 已提交
1265
    # .trainer_ are named for distribute train variables, checkpoint will not save it.
T
tangwei12 已提交
1266 1267 1268
    if ".trainer_" in var.name:
        return False

T
tangwei12 已提交
1269
    # .block is named for distribute train variables, checkpoint will not save it.
T
tangwei12 已提交
1270
    if ".block" in var.name:
T
tangwei12 已提交
1271 1272 1273
        return False

    return var.persistable
T
tangwei12 已提交
1274 1275


T
bug fix  
tangwei12 已提交
1276
def _make_chekcpoint_dirs(dirs):
T
add doc  
tangwei12 已提交
1277 1278 1279
    """
    _make_chekcpoint_dirs will makdir local directory directly, when the directory is exist, it will igore it.
    """
T
bug fix  
tangwei12 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
    assert dirs is not None

    if os.path.isfile(dirs):
        raise OSError(errno.ENOTDIR, "dirs path shoule be a Directory.", dirs)

    if not os.path.isdir(dirs):
        try:
            os.makedirs(dirs)
        except OSError as err:
            if err.errno != errno.EEXIST:
                raise err


T
tangwei12 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
def _get_dir_serial(dirname):
    _, serial = dirname.split(CHECKPOINT_SEPARATOR)

    try:
        serial_num = int(serial)
    except ValueError:
        serial_num = -1
    return serial_num


def _get_serial_dir(dirname, serial):
    serial_folder = CHECKPOINT_PREFIX + CHECKPOINT_SEPARATOR + str(serial)
T
tangwei12 已提交
1305
    serial_dir = os.path.join(dirname, serial_folder)
T
bug fix  
tangwei12 已提交
1306
    _make_chekcpoint_dirs(serial_dir)
T
tangwei12 已提交
1307 1308 1309 1310 1311 1312

    return serial_dir


def _get_model_dir(dirname):
    model_dir = os.path.join(dirname, MODEL_DIR)
T
bug fix  
tangwei12 已提交
1313
    _make_chekcpoint_dirs(model_dir)
T
tangwei12 已提交
1314 1315 1316
    return model_dir


T
tangwei12 已提交
1317 1318
def _get_lookuptable_dir(dirname):
    lookuptable_dir = os.path.join(dirname, LOOKUP_TABLE_DIR)
T
bug fix  
tangwei12 已提交
1319
    _make_chekcpoint_dirs(lookuptable_dir)
T
tangwei12 已提交
1320 1321 1322
    return lookuptable_dir


T
tangwei12 已提交
1323 1324 1325
def _get_trainer_dir(dirname, trainer_id):
    trainer_folder = TRAINER_PREFIX + CHECKPOINT_SEPARATOR + str(trainer_id)
    trainer_dir = os.path.join(dirname, trainer_folder)
T
bug fix  
tangwei12 已提交
1326
    _make_chekcpoint_dirs(trainer_dir)
T
tangwei12 已提交
1327
    return trainer_dir
T
tangwei12 已提交
1328 1329


T
tangwei12 已提交
1330
def _scroll_delete(dirname, max_num_checkpoints=3):
T
tangwei12 已提交
1331
    dirs = os.listdir(dirname)
T
tangwei12 已提交
1332
    serial_map = {}
T
tangwei12 已提交
1333
    for serial in dirs:
T
tangwei12 已提交
1334 1335
        serial_num = _get_dir_serial(serial)
        serial_map[serial_num] = serial
T
tangwei12 已提交
1336

T
tangwei12 已提交
1337
    if len(serial_map.keys()) <= max_num_checkpoints:
T
tangwei12 已提交
1338 1339
        return

T
tangwei12 已提交
1340
    serials = serial_map.keys()
T
tangwei12 已提交
1341
    serials.sort(reverse=True)
T
tangwei12 已提交
1342
    serials = serials[max_num_checkpoints:]
T
tangwei12 已提交
1343
    for serial in serials:
T
tangwei12 已提交
1344
        cur_dir = _get_serial_dir(dirname, serial)
T
bug fix  
tangwei12 已提交
1345 1346 1347 1348 1349
        try:
            shutil.rmtree(cur_dir)
        except OSError as err:
            if err.errno != errno.ENOENT:
                raise err
T
tangwei12 已提交
1350 1351


T
tangwei12 已提交
1352 1353
def _write_success(dirname):
    """
T
tangwei12 已提交
1354
    write an empty file named "_SUCCESS" in checkpoint dir, indicate this checkpoint is correct.
T
tangwei12 已提交
1355

F
fengjiayi 已提交
1356
    : param dirname
T
tangwei12 已提交
1357
    """
T
tangwei12 已提交
1358
    success_file = os.path.join(dirname, SUCCESS_MARK_FILENAME)
T
bug fix  
tangwei12 已提交
1359
    with open(success_file, 'a') as f:
1360
        now = time.ctime()
T
bug fix  
tangwei12 已提交
1361
        f.write(now)
T
tangwei12 已提交
1362 1363


T
tangwei12 已提交
1364
def _get_latest_checkpoint_serial(checkpoint_dir):
T
tangwei12 已提交
1365
    """
T
tangwei12 已提交
1366 1367
    get the latest file in checkpoint directory, the _SUCCESS file must exist in the directory

F
fengjiayi 已提交
1368
    : param checkpoint_dir
T
tangwei12 已提交
1369
    """
T
tangwei12 已提交
1370
    if not checkpoint_dir:
T
tangwei12 已提交
1371
        return -1
T
tangwei12 已提交
1372 1373 1374 1375 1376 1377

    def has_success(checkpoint_dir, cur_dir):
        """
        is _SUCCESS in this dir
        """

T
tangwei12 已提交
1378
        serial = _get_dir_serial(cur_dir)
T
tangwei12 已提交
1379 1380
        if serial == -1 or not os.path.isdir(
                os.path.join(checkpoint_dir, cur_dir)):
1381 1382 1383
            return -1

        success_path = os.path.join(
T
tangwei12 已提交
1384 1385
            _get_serial_dir(checkpoint_dir, serial), MODEL_DIR,
            SUCCESS_MARK_FILENAME)
T
tangwei12 已提交
1386
        if os.path.isfile(success_path):
T
tangwei12 已提交
1387
            return serial
T
tangwei12 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398

    if not os.path.isdir(checkpoint_dir):
        return -1

    current_dir = -1
    dirs = os.listdir(checkpoint_dir)
    for cur_dir in dirs:
        success_num = has_success(checkpoint_dir, cur_dir)
        if success_num > current_dir:
            current_dir = success_num
    return current_dir
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416


def get_test_program(filelist, program=None, startup_program=None):
    """
    Transpile current train program to a program to read test dataset
    if the program is using reader ops like "open_files_op".
    """

    def _copy_reader_var_(block, var, new_name=None):
        if new_name == None:
            new_name = var.name
        new_var = block.create_var(
            name=str(new_name), type=core.VarDesc.VarType.READER)
        new_var.desc.set_shapes(var.desc.shapes())
        new_var.desc.set_dtypes(var.desc.dtypes())
        new_var.persistable = True
        return new_var

F
fengjiayi 已提交
1417
    def _get_test_reader_name(train_reader_name):
1418 1419
        return train_reader_name + "_test"

F
fengjiayi 已提交
1420
    def _is_reader_op(op):
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
        block = op.block
        if "Out" in op.output_names:
            reader_out = block.vars[op.output("Out")[0]]
            if reader_out.type == core.VarDesc.VarType.READER:
                return True
        return False

    if program == None:
        program = default_main_program()
    if startup_program == None:
        startup_program = default_startup_program()
    startup_block = startup_program.global_block()

    # 1. find out the orignal reader var name
    startup_reader_op_list = []

    for op in startup_block.ops:
F
fengjiayi 已提交
1438
        if _is_reader_op(op):
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
            startup_reader_op_list.append(op)

    if len(startup_reader_op_list) == 0:
        return program

    root_reader_op = startup_reader_op_list[0]
    train_test_reader_map = {}
    # 2. add operators to startup to read open and read test data files
    for op in startup_reader_op_list:
        assert (len(op.output("Out")) == 1)
        train_reader_name = op.output("Out")[0]
        train_reader = startup_block.vars[train_reader_name]
        test_reader = _copy_reader_var_(
            startup_block,
            train_reader,
F
fengjiayi 已提交
1454
            new_name=_get_test_reader_name(train_reader_name))
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
        train_test_reader_map[train_reader.name] = test_reader

        test_op_inputs = {}
        for name in op.input_names:
            train_arg_names = op.input(name)
            test_arg_vars = []
            for arg_name in train_arg_names:
                arg_var = train_test_reader_map[
                    arg_name] if name == "UnderlyingReader" else startup_block.vars[
                        arg_name]
                test_arg_vars.append(arg_var)
            test_op_inputs[name] = test_arg_vars

        test_op = startup_block.append_op(
            type=op.type,
            inputs=test_op_inputs,
            outputs={'Out': [test_reader]},
            attrs=op.attrs)
        # root reader op's filelist attr for read test files
        if op.type == root_reader_op.type:
            test_op.set_attr("file_names", filelist)
        if op.type == "create_multi_pass_reader":
            test_op.set_attr("pass_num", 1)

    # 3. rename reader vars in inference program to different name
    #    to avoid read from train data.
    main_block = program.global_block()
    for var in main_block.vars.values():
        if var.type == core.VarDesc.VarType.READER:
            main_block.rename_var(
F
fengjiayi 已提交
1485
                str(var.name), str(_get_test_reader_name(var.name)))
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496

    for op in main_block.ops:
        if op.type == root_reader_op.type:
            test_op.set_attr("file_names", filelist)
        if op.type == "create_multi_pass_reader":
            test_op.set_attr("pass_num", 1)

    startup_program.sync_with_cpp()
    program.sync_with_cpp()

    return program