data_feed.cc 47.9 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

D
dongdaxiang 已提交
15 16 17 18 19
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

20
#include "paddle/fluid/framework/data_feed.h"
D
dongdaxiang 已提交
21
#ifdef _LINUX
D
dongdaxiang 已提交
22
#include <stdio_ext.h>
H
hutuxian 已提交
23 24 25
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
D
dongdaxiang 已提交
26
#endif
27
#include <utility>
28
#include "gflags/gflags.h"
W
Wang Guibao 已提交
29 30 31
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
32 33
#include "io/fs.h"
#include "io/shell.h"
W
Wang Guibao 已提交
34 35
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
36
#include "paddle/fluid/framework/fleet/box_wrapper.h"
37
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
38
#include "paddle/fluid/platform/timer.h"
W
Wang Guibao 已提交
39 40 41 42

namespace paddle {
namespace framework {

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
void RecordCandidateList::ReSize(size_t length) {
  _mutex.lock();
  _capacity = length;
  CHECK(_capacity > 0);  // NOLINT
  _candidate_list.clear();
  _candidate_list.resize(_capacity);
  _full = false;
  _cur_size = 0;
  _total_size = 0;
  _mutex.unlock();
}

void RecordCandidateList::ReInit() {
  _mutex.lock();
  _full = false;
  _cur_size = 0;
  _total_size = 0;
  _mutex.unlock();
}

void RecordCandidateList::AddAndGet(const Record& record,
                                    RecordCandidate* result) {
  _mutex.lock();
  size_t index = 0;
  ++_total_size;
  auto fleet_ptr = FleetWrapper::GetInstance();
  if (!_full) {
    _candidate_list[_cur_size++] = record;
    _full = (_cur_size == _capacity);
  } else {
    CHECK(_cur_size == _capacity);
    index = fleet_ptr->LocalRandomEngine()() % _total_size;
    if (index < _capacity) {
      _candidate_list[index] = record;
    }
  }
  index = fleet_ptr->LocalRandomEngine()() % _cur_size;
  *result = _candidate_list[index];
  _mutex.unlock();
}

W
Wang Guibao 已提交
84 85 86 87
void DataFeed::AddFeedVar(Variable* var, const std::string& name) {
  CheckInit();
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    if (name == use_slots_[i]) {
88 89 90 91 92
      if (var == nullptr) {
        feed_vec_[i] = nullptr;
      } else {
        feed_vec_[i] = var->GetMutable<LoDTensor>();
      }
W
Wang Guibao 已提交
93 94 95 96 97
    }
  }
}

bool DataFeed::SetFileList(const std::vector<std::string>& files) {
98
  std::unique_lock<std::mutex> lock(*mutex_for_pick_file_);
W
Wang Guibao 已提交
99
  CheckInit();
100 101
  // Do not set finish_set_filelist_ flag,
  // since a user may set file many times after init reader
W
Wang Guibao 已提交
102 103 104 105 106 107 108
  filelist_.assign(files.begin(), files.end());

  finish_set_filelist_ = true;
  return true;
}

void DataFeed::SetBatchSize(int batch_size) {
109 110 111
  PADDLE_ENFORCE_GT(batch_size, 0,
                    platform::errors::InvalidArgument(
                        "Batch size %d is illegal.", batch_size));
W
Wang Guibao 已提交
112 113 114 115
  default_batch_size_ = batch_size;
}

bool DataFeed::PickOneFile(std::string* filename) {
116 117 118 119 120 121 122
  PADDLE_ENFORCE_NOT_NULL(
      mutex_for_pick_file_,
      platform::errors::PreconditionNotMet(
          "You should call SetFileListMutex before PickOneFile"));
  PADDLE_ENFORCE_NOT_NULL(
      file_idx_, platform::errors::PreconditionNotMet(
                     "You should call SetFileListIndex before PickOneFile"));
123 124
  std::unique_lock<std::mutex> lock(*mutex_for_pick_file_);
  if (*file_idx_ == filelist_.size()) {
125
    VLOG(3) << "DataFeed::PickOneFile no more file to pick";
W
Wang Guibao 已提交
126 127
    return false;
  }
128 129
  VLOG(3) << "file_idx_=" << *file_idx_;
  *filename = filelist_[(*file_idx_)++];
W
Wang Guibao 已提交
130 131 132 133 134 135 136 137 138 139 140 141
  return true;
}

void DataFeed::CheckInit() {
  PADDLE_ENFORCE(finish_init_, "Initialization did not succeed.");
}

void DataFeed::CheckSetFileList() {
  PADDLE_ENFORCE(finish_set_filelist_, "Set filelist did not succeed.");
}

void DataFeed::CheckStart() {
142 143 144
  PADDLE_ENFORCE_EQ(finish_start_, true,
                    platform::errors::PreconditionNotMet(
                        "Datafeed has not started running yet."));
W
Wang Guibao 已提交
145 146
}

H
hutuxian 已提交
147 148 149 150 151 152 153
void DataFeed::AssignFeedVar(const Scope& scope) {
  CheckInit();
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    feed_vec_[i] = scope.FindVar(use_slots_[i])->GetMutable<LoDTensor>();
  }
}

154 155 156 157 158 159 160 161 162 163 164 165
void DataFeed::CopyToFeedTensor(void* dst, const void* src, size_t size) {
  if (platform::is_cpu_place(this->place_)) {
    memcpy(dst, src, size);
  } else {
#ifdef PADDLE_WITH_CUDA
    cudaMemcpy(dst, src, size, cudaMemcpyHostToDevice);
#else
    PADDLE_THROW("Not supported GPU, Please compile WITH_GPU option");
#endif
  }
}

W
Wang Guibao 已提交
166 167 168 169
template <typename T>
void PrivateQueueDataFeed<T>::SetQueueSize(int queue_size) {
  PADDLE_ENFORCE(queue_size > 0, "Illegal queue size: %d.", queue_size);
  queue_size_ = queue_size;
170
  queue_ = paddle::framework::MakeChannel<T>();
J
jiaqi 已提交
171
  queue_->SetCapacity(queue_size);
W
Wang Guibao 已提交
172 173 174 175 176
}

template <typename T>
bool PrivateQueueDataFeed<T>::Start() {
  CheckSetFileList();
177 178
  read_thread_ = std::thread(&PrivateQueueDataFeed::ReadThread, this);
  read_thread_.detach();
W
Wang Guibao 已提交
179 180 181 182 183 184 185

  finish_start_ = true;
  return true;
}

template <typename T>
void PrivateQueueDataFeed<T>::ReadThread() {
D
dongdaxiang 已提交
186
#ifdef _LINUX
187 188 189 190 191 192 193
  std::string filename;
  while (PickOneFile(&filename)) {
    int err_no = 0;
    fp_ = fs_open_read(filename, &err_no, pipe_command_);
    __fsetlocking(&*fp_, FSETLOCKING_BYCALLER);
    T instance;
    while (ParseOneInstanceFromPipe(&instance)) {
194
      queue_->Put(instance);
195
    }
W
Wang Guibao 已提交
196
  }
197
  queue_->Close();
D
dongdaxiang 已提交
198
#endif
W
Wang Guibao 已提交
199 200 201 202
}

template <typename T>
int PrivateQueueDataFeed<T>::Next() {
X
xjqbest 已提交
203
#ifdef _LINUX
W
Wang Guibao 已提交
204 205 206 207
  CheckStart();
  int index = 0;
  T ins_vec;
  while (index < default_batch_size_) {
208 209
    T instance;
    if (!queue_->Get(instance)) {
W
Wang Guibao 已提交
210 211 212 213 214 215 216 217 218
      break;
    }
    AddInstanceToInsVec(&ins_vec, instance, index++);
  }
  batch_size_ = index;
  if (batch_size_ != 0) {
    PutToFeedVec(ins_vec);
  }
  return batch_size_;
X
xjqbest 已提交
219 220 221
#else
  return 0;
#endif
W
Wang Guibao 已提交
222 223
}

224
// explicit instantiation
W
Wang Guibao 已提交
225 226
template class PrivateQueueDataFeed<std::vector<MultiSlotType>>;

227 228
template <typename T>
InMemoryDataFeed<T>::InMemoryDataFeed() {
229 230
  this->file_idx_ = nullptr;
  this->mutex_for_pick_file_ = nullptr;
J
jiaqi 已提交
231 232 233
  this->fp_ = nullptr;
  this->thread_id_ = 0;
  this->thread_num_ = 1;
234
  this->parse_ins_id_ = false;
235
  this->parse_content_ = false;
236 237 238
  this->parse_logkey_ = false;
  this->enable_pv_merge_ = false;
  this->current_phase_ = 1;  // 1:join ;0:update
J
jiaqi 已提交
239 240 241
  this->input_channel_ = nullptr;
  this->output_channel_ = nullptr;
  this->consume_channel_ = nullptr;
242 243 244 245
}

template <typename T>
bool InMemoryDataFeed<T>::Start() {
X
xjqbest 已提交
246
#ifdef _LINUX
J
jiaqi 已提交
247 248 249 250 251
  this->CheckSetFileList();
  if (output_channel_->Size() == 0 && input_channel_->Size() != 0) {
    std::vector<T> data;
    input_channel_->Read(data);
    output_channel_->Write(std::move(data));
252
  }
X
xjqbest 已提交
253
#endif
J
jiaqi 已提交
254
  this->finish_start_ = true;
255 256 257 258 259
  return true;
}

template <typename T>
int InMemoryDataFeed<T>::Next() {
X
xjqbest 已提交
260
#ifdef _LINUX
J
jiaqi 已提交
261 262 263 264 265
  this->CheckStart();
  CHECK(output_channel_ != nullptr);
  CHECK(consume_channel_ != nullptr);
  VLOG(3) << "output_channel_ size=" << output_channel_->Size()
          << ", consume_channel_ size=" << consume_channel_->Size()
X
xujiaqi01 已提交
266
          << ", thread_id=" << thread_id_;
267
  int index = 0;
D
dongdaxiang 已提交
268
  T instance;
J
jiaqi 已提交
269 270 271 272
  std::vector<T> ins_vec;
  ins_vec.reserve(this->default_batch_size_);
  while (index < this->default_batch_size_) {
    if (output_channel_->Size() == 0) {
D
dongdaxiang 已提交
273
      break;
274
    }
J
jiaqi 已提交
275 276 277 278
    output_channel_->Get(instance);
    ins_vec.push_back(instance);
    ++index;
    consume_channel_->Put(std::move(instance));
D
dongdaxiang 已提交
279
  }
J
jiaqi 已提交
280 281
  this->batch_size_ = index;
  VLOG(3) << "batch_size_=" << this->batch_size_
282
          << ", thread_id=" << thread_id_;
J
jiaqi 已提交
283
  if (this->batch_size_ != 0) {
D
dongdaxiang 已提交
284 285
    PutToFeedVec(ins_vec);
  } else {
J
jiaqi 已提交
286 287 288 289
    VLOG(3) << "finish reading, output_channel_ size="
            << output_channel_->Size()
            << ", consume_channel_ size=" << consume_channel_->Size()
            << ", thread_id=" << thread_id_;
D
dongdaxiang 已提交
290
  }
J
jiaqi 已提交
291
  return this->batch_size_;
X
xjqbest 已提交
292 293 294
#else
  return 0;
#endif
295 296
}

297
template <typename T>
J
jiaqi 已提交
298 299 300 301 302 303 304
void InMemoryDataFeed<T>::SetInputChannel(void* channel) {
  input_channel_ = static_cast<paddle::framework::ChannelObject<T>*>(channel);
}

template <typename T>
void InMemoryDataFeed<T>::SetOutputChannel(void* channel) {
  output_channel_ = static_cast<paddle::framework::ChannelObject<T>*>(channel);
305 306 307
}

template <typename T>
J
jiaqi 已提交
308 309
void InMemoryDataFeed<T>::SetConsumeChannel(void* channel) {
  consume_channel_ = static_cast<paddle::framework::ChannelObject<T>*>(channel);
310 311
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
template <typename T>
void InMemoryDataFeed<T>::SetInputPvChannel(void* channel) {
  input_pv_channel_ =
      static_cast<paddle::framework::ChannelObject<PvInstance>*>(channel);
}

template <typename T>
void InMemoryDataFeed<T>::SetOutputPvChannel(void* channel) {
  output_pv_channel_ =
      static_cast<paddle::framework::ChannelObject<PvInstance>*>(channel);
}

template <typename T>
void InMemoryDataFeed<T>::SetConsumePvChannel(void* channel) {
  consume_pv_channel_ =
      static_cast<paddle::framework::ChannelObject<PvInstance>*>(channel);
}

330 331 332 333 334 335 336 337 338 339
template <typename T>
void InMemoryDataFeed<T>::SetThreadId(int thread_id) {
  thread_id_ = thread_id;
}

template <typename T>
void InMemoryDataFeed<T>::SetThreadNum(int thread_num) {
  thread_num_ = thread_num;
}

340 341 342 343 344
template <typename T>
void InMemoryDataFeed<T>::SetParseContent(bool parse_content) {
  parse_content_ = parse_content;
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
template <typename T>
void InMemoryDataFeed<T>::SetParseLogKey(bool parse_logkey) {
  parse_logkey_ = parse_logkey;
}

template <typename T>
void InMemoryDataFeed<T>::SetEnablePvMerge(bool enable_pv_merge) {
  enable_pv_merge_ = enable_pv_merge;
}

template <typename T>
void InMemoryDataFeed<T>::SetCurrentPhase(int current_phase) {
  current_phase_ = current_phase;
}

360 361 362 363 364
template <typename T>
void InMemoryDataFeed<T>::SetParseInsId(bool parse_ins_id) {
  parse_ins_id_ = parse_ins_id;
}

365 366
template <typename T>
void InMemoryDataFeed<T>::LoadIntoMemory() {
D
dongdaxiang 已提交
367
#ifdef _LINUX
X
xujiaqi01 已提交
368
  VLOG(3) << "LoadIntoMemory() begin, thread_id=" << thread_id_;
369
  std::string filename;
J
jiaqi 已提交
370
  while (this->PickOneFile(&filename)) {
X
xujiaqi01 已提交
371 372
    VLOG(3) << "PickOneFile, filename=" << filename
            << ", thread_id=" << thread_id_;
H
hutuxian 已提交
373 374 375 376 377 378 379 380 381 382 383
#ifdef PADDLE_WITH_BOX_PS
    if (BoxWrapper::GetInstance()->UseAfsApi()) {
      this->fp_ = BoxWrapper::GetInstance()->afs_manager->GetFile(
          filename, this->pipe_command_);
    } else {
#endif
      int err_no = 0;
      this->fp_ = fs_open_read(filename, &err_no, this->pipe_command_);
#ifdef PADDLE_WITH_BOX_PS
    }
#endif
J
jiaqi 已提交
384 385 386
    CHECK(this->fp_ != nullptr);
    __fsetlocking(&*(this->fp_), FSETLOCKING_BYCALLER);
    paddle::framework::ChannelWriter<T> writer(input_channel_);
387
    T instance;
388 389
    platform::Timer timeline;
    timeline.Start();
D
dongdaxiang 已提交
390
    while (ParseOneInstanceFromPipe(&instance)) {
J
jiaqi 已提交
391 392
      writer << std::move(instance);
      instance = T();
393
    }
J
jiaqi 已提交
394
    writer.Flush();
395
    timeline.Pause();
396 397
    VLOG(3) << "LoadIntoMemory() read all lines, file=" << filename
            << ", cost time=" << timeline.ElapsedSec()
398
            << " seconds, thread_id=" << thread_id_;
399
  }
X
xujiaqi01 已提交
400
  VLOG(3) << "LoadIntoMemory() end, thread_id=" << thread_id_;
D
dongdaxiang 已提交
401
#endif
402 403
}

404
// explicit instantiation
J
jiaqi 已提交
405
template class InMemoryDataFeed<Record>;
406

W
Wang Guibao 已提交
407 408 409 410 411 412 413 414 415 416 417
void MultiSlotDataFeed::Init(
    const paddle::framework::DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

  PADDLE_ENFORCE(data_feed_desc.has_multi_slot_desc(),
                 "Multi_slot_desc has not been set.");
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
J
jiaqi 已提交
418 419
  // temporarily set queue size = batch size * 100
  SetQueueSize(data_feed_desc.batch_size() * 100);
W
Wang Guibao 已提交
420 421 422 423
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
424 425
  total_dims_without_inductive_.resize(all_slot_num);
  inductive_shape_index_.resize(all_slot_num);
W
Wang Guibao 已提交
426 427 428 429 430 431 432
  use_slots_.clear();
  use_slots_is_dense_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
433 434
    total_dims_without_inductive_[i] = 1;
    inductive_shape_index_[i] = -1;
W
Wang Guibao 已提交
435 436 437
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
438 439
      std::vector<int> local_shape;
      if (slot.is_dense()) {
440
        for (int j = 0; j < slot.shape_size(); ++j) {
441 442
          if (slot.shape(j) > 0) {
            total_dims_without_inductive_[i] *= slot.shape(j);
443
          }
444 445
          if (slot.shape(j) == -1) {
            inductive_shape_index_[i] = j;
446
          }
447 448
        }
      }
449
      for (int j = 0; j < slot.shape_size(); ++j) {
450
        local_shape.push_back(slot.shape(j));
451 452
      }
      use_slots_shape_.push_back(local_shape);
W
Wang Guibao 已提交
453 454 455
    }
  }
  feed_vec_.resize(use_slots_.size());
456
  pipe_command_ = data_feed_desc.pipe_command();
W
Wang Guibao 已提交
457 458 459
  finish_init_ = true;
}

D
dongdaxiang 已提交
460
void MultiSlotDataFeed::ReadThread() {
461
#ifdef _LINUX
462 463 464 465
  std::string filename;
  while (PickOneFile(&filename)) {
    int err_no = 0;
    fp_ = fs_open_read(filename, &err_no, pipe_command_);
D
dongdaxiang 已提交
466
    CHECK(fp_ != nullptr);
467 468 469 470 471
    __fsetlocking(&*fp_, FSETLOCKING_BYCALLER);
    std::vector<MultiSlotType> instance;
    int ins_num = 0;
    while (ParseOneInstanceFromPipe(&instance)) {
      ins_num++;
472
      queue_->Put(instance);
473
    }
D
dongdaxiang 已提交
474
    VLOG(3) << "filename: " << filename << " inst num: " << ins_num;
D
dongdaxiang 已提交
475
  }
476
  queue_->Close();
477
#endif
D
dongdaxiang 已提交
478 479
}

W
Wang Guibao 已提交
480
bool MultiSlotDataFeed::CheckFile(const char* filename) {
481
#ifdef _LINUX
W
Wang Guibao 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
  CheckInit();  // get info of slots
  std::ifstream fin(filename);
  if (!fin.good()) {
    VLOG(1) << "error: open file<" << filename << "> fail";
    return false;
  }
  std::string line;
  int instance_cout = 0;
  std::string all_slots_alias = "";
  for (const auto& alias : all_slots_) {
    all_slots_alias += alias + " ";
  }
  std::string use_slots_alias = "";
  for (const auto& alias : use_slots_) {
    use_slots_alias += alias + " ";
  }
  VLOG(3) << "total slots num: " << all_slots_.size();
  VLOG(3) << "total slots alias: " << all_slots_alias;
  VLOG(3) << "used slots num: " << use_slots_.size();
  VLOG(3) << "used slots alias: " << use_slots_alias;
  while (getline(fin, line)) {
    ++instance_cout;
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int len = line.length();
    for (size_t i = 0; i < all_slots_.size(); ++i) {
X
xjqbest 已提交
508
      auto num = strtol(endptr, &endptr, 10);
W
Wang Guibao 已提交
509
      if (num < 0) {
510 511
        VLOG(0) << "error: the number of ids is a negative number: " << num;
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
512 513 514
                << filename << ">";
        return false;
      } else if (num == 0) {
515
        VLOG(0)
W
Wang Guibao 已提交
516 517 518 519
            << "error: the number of ids can not be zero, you need "
               "padding it in data generator; or if there is something wrong"
               " with the data, please check if the data contains unresolvable "
               "characters.";
520
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
521 522
                << filename << ">";
        return false;
X
xjqbest 已提交
523
      } else if (errno == ERANGE || num > INT_MAX) {
524 525
        VLOG(0) << "error: the number of ids greater than INT_MAX";
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
526 527 528 529 530 531 532
                << filename << ">";
        return false;
      }
      if (all_slots_type_[i] == "float") {
        for (int i = 0; i < num; ++i) {
          strtof(endptr, &endptr);
          if (errno == ERANGE) {
533
            VLOG(0) << "error: the value is out of the range of "
W
Wang Guibao 已提交
534
                       "representable values for float";
535
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
536 537 538 539
                    << filename << ">";
            return false;
          }
          if (i + 1 != num && endptr - str == len) {
540 541
            VLOG(0) << "error: there is a wrong with the number of ids.";
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
542 543 544 545 546 547 548 549
                    << filename << ">";
            return false;
          }
        }
      } else if (all_slots_type_[i] == "uint64") {
        for (int i = 0; i < num; ++i) {
          strtoull(endptr, &endptr, 10);
          if (errno == ERANGE) {
550
            VLOG(0) << "error: the value is out of the range of "
W
Wang Guibao 已提交
551
                       "representable values for uint64_t";
552
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
553 554 555 556
                    << filename << ">";
            return false;
          }
          if (i + 1 != num && endptr - str == len) {
557 558
            VLOG(0) << "error: there is a wrong with the number of ids.";
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
559 560 561 562 563
                    << filename << ">";
            return false;
          }
        }
      } else {
564
        VLOG(0) << "error: this type<" << all_slots_type_[i]
W
Wang Guibao 已提交
565 566 567 568
                << "> is not supported";
        return false;
      }
    }
569 570 571
    // It may be added '\t' character to the end of the output of reduce
    // task when processes data by Hadoop(when the output of the reduce
    // task of Hadoop has only one field, it will add a '\t' at the end
572 573 574 575 576
    // of the line by default, and you can use this option to avoid it:
    // `-D mapred.textoutputformat.ignoreseparator=true`), which does
    // not affect the correctness of the data. Therefore, it should be
    // judged that the data is not normal when the end of each line of
    // data contains characters which are not spaces.
577 578 579 580 581 582 583 584
    while (endptr - str != len) {
      if (!isspace(*(endptr++))) {
        VLOG(0)
            << "error: there is some extra characters at the end of the line.";
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
                << filename << ">";
        return false;
      }
W
Wang Guibao 已提交
585 586 587 588
    }
  }
  VLOG(3) << "instances cout: " << instance_cout;
  VLOG(3) << "The file format is correct";
589
#endif
W
Wang Guibao 已提交
590 591 592
  return true;
}

D
dongdaxiang 已提交
593 594
bool MultiSlotDataFeed::ParseOneInstanceFromPipe(
    std::vector<MultiSlotType>* instance) {
595
#ifdef _LINUX
596 597 598
  thread_local string::LineFileReader reader;

  if (!reader.getline(&*(fp_.get()))) {
D
dongdaxiang 已提交
599 600
    return false;
  } else {
601 602 603
    int use_slots_num = use_slots_.size();
    instance->resize(use_slots_num);

D
dongdaxiang 已提交
604 605
    const char* str = reader.get();
    std::string line = std::string(str);
606
    // VLOG(3) << line;
D
dongdaxiang 已提交
607 608 609 610 611
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
612 613 614 615 616 617 618 619
      PADDLE_ENFORCE_NE(
          num, 0,
          platform::errors::InvalidArgument(
              "The number of ids can not be zero, you need padding "
              "it in data generator; or if there is something wrong with "
              "the data, please check if the data contains unresolvable "
              "characters.\nplease check this error line: %s",
              str));
D
dongdaxiang 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
      if (idx != -1) {
        (*instance)[idx].Init(all_slots_type_[i]);
        if ((*instance)[idx].GetType()[0] == 'f') {  // float
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
            (*instance)[idx].AddValue(feasign);
          }
        } else if ((*instance)[idx].GetType()[0] == 'u') {  // uint64
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
            (*instance)[idx].AddValue(feasign);
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
D
dongdaxiang 已提交
636 637 638 639
          // pos = line.find_first_of(' ', pos + 1);
          while (line[pos + 1] != ' ') {
            pos++;
          }
D
dongdaxiang 已提交
640 641 642 643 644
        }
      }
    }
    return true;
  }
645 646 647
#else
  return true;
#endif
D
dongdaxiang 已提交
648 649
}

W
Wang Guibao 已提交
650
bool MultiSlotDataFeed::ParseOneInstance(std::vector<MultiSlotType>* instance) {
X
xjqbest 已提交
651
#ifdef _LINUX
W
Wang Guibao 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
  std::string line;
  if (getline(file_, line)) {
    int use_slots_num = use_slots_.size();
    instance->resize(use_slots_num);
    // parse line
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
      PADDLE_ENFORCE(
          num,
          "The number of ids can not be zero, you need padding "
          "it in data generator; or if there is something wrong with "
          "the data, please check if the data contains unresolvable "
          "characters.\nplease check this error line: %s",
          str);
670

W
Wang Guibao 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
      if (idx != -1) {
        (*instance)[idx].Init(all_slots_type_[i]);
        if ((*instance)[idx].GetType()[0] == 'f') {  // float
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
            (*instance)[idx].AddValue(feasign);
          }
        } else if ((*instance)[idx].GetType()[0] == 'u') {  // uint64
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
            (*instance)[idx].AddValue(feasign);
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          pos = line.find_first_of(' ', pos + 1);
        }
      }
    }
  } else {
    return false;
  }
X
xjqbest 已提交
694 695
#endif
  return false;
W
Wang Guibao 已提交
696 697 698 699 700
}

void MultiSlotDataFeed::AddInstanceToInsVec(
    std::vector<MultiSlotType>* ins_vec,
    const std::vector<MultiSlotType>& instance, int index) {
X
xjqbest 已提交
701
#ifdef _LINUX
W
Wang Guibao 已提交
702 703 704 705 706 707 708
  if (index == 0) {
    ins_vec->resize(instance.size());
    for (size_t i = 0; i < instance.size(); ++i) {
      (*ins_vec)[i].Init(instance[i].GetType());
      (*ins_vec)[i].InitOffset();
    }
  }
709

W
Wang Guibao 已提交
710 711 712
  for (size_t i = 0; i < instance.size(); ++i) {
    (*ins_vec)[i].AddIns(instance[i]);
  }
X
xjqbest 已提交
713
#endif
W
Wang Guibao 已提交
714 715 716 717
}

void MultiSlotDataFeed::PutToFeedVec(
    const std::vector<MultiSlotType>& ins_vec) {
X
xjqbest 已提交
718
#ifdef _LINUX
W
Wang Guibao 已提交
719
  for (size_t i = 0; i < use_slots_.size(); ++i) {
720 721 722
    if (feed_vec_[i] == nullptr) {
      continue;
    }
W
Wang Guibao 已提交
723 724 725
    const auto& type = ins_vec[i].GetType();
    const auto& offset = ins_vec[i].GetOffset();
    int total_instance = static_cast<int>(offset.back());
726

W
Wang Guibao 已提交
727 728
    if (type[0] == 'f') {  // float
      const auto& feasign = ins_vec[i].GetFloatData();
729 730 731
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0], total_instance * sizeof(float));
W
Wang Guibao 已提交
732 733 734
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      const auto& feasign = ins_vec[i].GetUint64Data();
735
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
736 737 738
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0],
                       total_instance * sizeof(int64_t));
739
    }
740

741 742 743
    LoD data_lod{offset};
    feed_vec_[i]->set_lod(data_lod);
    if (use_slots_is_dense_[i]) {
744 745 746 747
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
748
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
W
Wang Guibao 已提交
749 750
    }
  }
X
xjqbest 已提交
751
#endif
W
Wang Guibao 已提交
752 753
}

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
void MultiSlotInMemoryDataFeed::Init(
    const paddle::framework::DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

  PADDLE_ENFORCE(data_feed_desc.has_multi_slot_desc(),
                 "Multi_slot_desc has not been set.");
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
769 770
  total_dims_without_inductive_.resize(all_slot_num);
  inductive_shape_index_.resize(all_slot_num);
771 772 773 774 775 776 777
  use_slots_.clear();
  use_slots_is_dense_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
778 779
    total_dims_without_inductive_[i] = 1;
    inductive_shape_index_[i] = -1;
780 781 782
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
783 784
      std::vector<int> local_shape;
      if (slot.is_dense()) {
785
        for (int j = 0; j < slot.shape_size(); ++j) {
786 787
          if (slot.shape(j) > 0) {
            total_dims_without_inductive_[i] *= slot.shape(j);
788
          }
789 790
          if (slot.shape(j) == -1) {
            inductive_shape_index_[i] = j;
791
          }
792 793
        }
      }
794
      for (int j = 0; j < slot.shape_size(); ++j) {
795
        local_shape.push_back(slot.shape(j));
796 797
      }
      use_slots_shape_.push_back(local_shape);
798 799 800 801 802 803 804
    }
  }
  feed_vec_.resize(use_slots_.size());
  pipe_command_ = data_feed_desc.pipe_command();
  finish_init_ = true;
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818
void MultiSlotInMemoryDataFeed::GetMsgFromLogKey(const std::string& log_key,
                                                 uint64_t* search_id,
                                                 uint32_t* cmatch,
                                                 uint32_t* rank) {
  std::string searchid_str = log_key.substr(16, 16);
  *search_id = (uint64_t)strtoull(searchid_str.c_str(), NULL, 16);

  std::string cmatch_str = log_key.substr(11, 3);
  *cmatch = (uint32_t)strtoul(cmatch_str.c_str(), NULL, 16);

  std::string rank_str = log_key.substr(14, 2);
  *rank = (uint32_t)strtoul(rank_str.c_str(), NULL, 16);
}

J
jiaqi 已提交
819
bool MultiSlotInMemoryDataFeed::ParseOneInstanceFromPipe(Record* instance) {
X
xjqbest 已提交
820
#ifdef _LINUX
821 822 823 824 825 826 827
  thread_local string::LineFileReader reader;

  if (!reader.getline(&*(fp_.get()))) {
    return false;
  } else {
    const char* str = reader.get();
    std::string line = std::string(str);
828
    // VLOG(3) << line;
829 830
    char* endptr = const_cast<char*>(str);
    int pos = 0;
831 832 833 834 835 836 837 838 839 840 841 842
    if (parse_ins_id_) {
      int num = strtol(&str[pos], &endptr, 10);
      CHECK(num == 1);  // NOLINT
      pos = endptr - str + 1;
      size_t len = 0;
      while (str[pos + len] != ' ') {
        ++len;
      }
      instance->ins_id_ = std::string(str + pos, len);
      pos += len + 1;
      VLOG(3) << "ins_id " << instance->ins_id_;
    }
843 844 845 846 847 848 849 850 851 852 853 854
    if (parse_content_) {
      int num = strtol(&str[pos], &endptr, 10);
      CHECK(num == 1);  // NOLINT
      pos = endptr - str + 1;
      size_t len = 0;
      while (str[pos + len] != ' ') {
        ++len;
      }
      instance->content_ = std::string(str + pos, len);
      pos += len + 1;
      VLOG(3) << "content " << instance->content_;
    }
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
    if (parse_logkey_) {
      int num = strtol(&str[pos], &endptr, 10);
      CHECK(num == 1);  // NOLINT
      pos = endptr - str + 1;
      size_t len = 0;
      while (str[pos + len] != ' ') {
        ++len;
      }
      // parse_logkey
      std::string log_key = std::string(str + pos, len);
      uint64_t search_id;
      uint32_t cmatch;
      uint32_t rank;
      GetMsgFromLogKey(log_key, &search_id, &cmatch, &rank);

      instance->search_id = search_id;
      instance->cmatch = cmatch;
      instance->rank = rank;
      pos += len + 1;
    }
875 876 877 878 879 880 881 882 883 884 885
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
      PADDLE_ENFORCE(
          num,
          "The number of ids can not be zero, you need padding "
          "it in data generator; or if there is something wrong with "
          "the data, please check if the data contains unresolvable "
          "characters.\nplease check this error line: %s",
          str);
      if (idx != -1) {
J
jiaqi 已提交
886
        if (all_slots_type_[i][0] == 'f') {  // float
887 888
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
J
jiaqi 已提交
889
            // if float feasign is equal to zero, ignore it
890 891
            // except when slot is dense
            if (fabs(feasign) < 1e-6 && !use_slots_is_dense_[i]) {
J
jiaqi 已提交
892 893 894 895 896
              continue;
            }
            FeatureKey f;
            f.float_feasign_ = feasign;
            instance->float_feasigns_.push_back(FeatureItem(f, idx));
897
          }
J
jiaqi 已提交
898
        } else if (all_slots_type_[i][0] == 'u') {  // uint64
899 900
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
J
jiaqi 已提交
901
            // if uint64 feasign is equal to zero, ignore it
902 903
            // except when slot is dense
            if (feasign == 0 && !use_slots_is_dense_[i]) {
J
jiaqi 已提交
904 905 906 907 908
              continue;
            }
            FeatureKey f;
            f.uint64_feasign_ = feasign;
            instance->uint64_feasigns_.push_back(FeatureItem(f, idx));
909 910 911 912 913 914 915 916 917 918 919 920
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          // pos = line.find_first_of(' ', pos + 1);
          while (line[pos + 1] != ' ') {
            pos++;
          }
        }
      }
    }
J
jiaqi 已提交
921 922
    instance->float_feasigns_.shrink_to_fit();
    instance->uint64_feasigns_.shrink_to_fit();
923 924
    return true;
  }
X
xjqbest 已提交
925 926 927
#else
  return false;
#endif
928 929
}

J
jiaqi 已提交
930
bool MultiSlotInMemoryDataFeed::ParseOneInstance(Record* instance) {
X
xjqbest 已提交
931
#ifdef _LINUX
932 933
  std::string line;
  if (getline(file_, line)) {
934
    VLOG(3) << line;
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
    // parse line
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
      PADDLE_ENFORCE(
          num,
          "The number of ids can not be zero, you need padding "
          "it in data generator; or if there is something wrong with "
          "the data, please check if the data contains unresolvable "
          "characters.\nplease check this error line: %s",
          str);

      if (idx != -1) {
J
jiaqi 已提交
951
        if (all_slots_type_[i][0] == 'f') {  // float
952 953
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
J
jiaqi 已提交
954 955 956 957 958 959
            if (fabs(feasign) < 1e-6) {
              continue;
            }
            FeatureKey f;
            f.float_feasign_ = feasign;
            instance->float_feasigns_.push_back(FeatureItem(f, idx));
960
          }
J
jiaqi 已提交
961
        } else if (all_slots_type_[i][0] == 'u') {  // uint64
962 963
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
J
jiaqi 已提交
964 965 966 967 968 969
            if (feasign == 0) {
              continue;
            }
            FeatureKey f;
            f.uint64_feasign_ = feasign;
            instance->uint64_feasigns_.push_back(FeatureItem(f, idx));
970 971 972 973 974 975 976 977 978
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          pos = line.find_first_of(' ', pos + 1);
        }
      }
    }
J
jiaqi 已提交
979 980 981
    instance->float_feasigns_.shrink_to_fit();
    instance->uint64_feasigns_.shrink_to_fit();
    return true;
982 983 984
  } else {
    return false;
  }
X
xjqbest 已提交
985 986
#endif
  return false;
987 988
}

J
jiaqi 已提交
989 990
void MultiSlotInMemoryDataFeed::PutToFeedVec(
    const std::vector<Record>& ins_vec) {
X
xjqbest 已提交
991
#ifdef _LINUX
J
jiaqi 已提交
992 993 994 995 996 997 998
  std::vector<std::vector<float>> batch_float_feasigns(use_slots_.size(),
                                                       std::vector<float>());
  std::vector<std::vector<uint64_t>> batch_uint64_feasigns(
      use_slots_.size(), std::vector<uint64_t>());
  std::vector<std::vector<size_t>> offset(use_slots_.size(),
                                          std::vector<size_t>{0});
  std::vector<bool> visit(use_slots_.size(), false);
999 1000 1001 1002
  ins_content_vec_.clear();
  ins_content_vec_.reserve(ins_vec.size());
  ins_id_vec_.clear();
  ins_id_vec_.reserve(ins_vec.size());
J
jiaqi 已提交
1003 1004
  for (size_t i = 0; i < ins_vec.size(); ++i) {
    auto& r = ins_vec[i];
1005 1006
    ins_id_vec_.push_back(r.ins_id_);
    ins_content_vec_.push_back(r.content_);
J
jiaqi 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    for (auto& item : r.float_feasigns_) {
      batch_float_feasigns[item.slot()].push_back(item.sign().float_feasign_);
      visit[item.slot()] = true;
    }
    for (auto& item : r.uint64_feasigns_) {
      batch_uint64_feasigns[item.slot()].push_back(item.sign().uint64_feasign_);
      visit[item.slot()] = true;
    }
    for (size_t j = 0; j < use_slots_.size(); ++j) {
      const auto& type = all_slots_type_[j];
      if (visit[j]) {
        visit[j] = false;
      } else {
        // fill slot value with default value 0
        if (type[0] == 'f') {  // float
          batch_float_feasigns[j].push_back(0.0);
        } else if (type[0] == 'u') {  // uint64
          batch_uint64_feasigns[j].push_back(0);
        }
      }
      // get offset of this ins in this slot
      if (type[0] == 'f') {  // float
        offset[j].push_back(batch_float_feasigns[j].size());
      } else if (type[0] == 'u') {  // uint64
        offset[j].push_back(batch_uint64_feasigns[j].size());
      }
1033 1034 1035 1036
    }
  }

  for (size_t i = 0; i < use_slots_.size(); ++i) {
1037 1038 1039
    if (feed_vec_[i] == nullptr) {
      continue;
    }
J
jiaqi 已提交
1040 1041
    int total_instance = offset[i].back();
    const auto& type = all_slots_type_[i];
1042
    if (type[0] == 'f') {  // float
J
jiaqi 已提交
1043
      float* feasign = batch_float_feasigns[i].data();
1044 1045 1046
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(float));
1047 1048
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
J
jiaqi 已提交
1049
      uint64_t* feasign = batch_uint64_feasigns[i].data();
1050
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
1051 1052
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(int64_t));
1053
    }
J
jiaqi 已提交
1054 1055
    auto& slot_offset = offset[i];
    LoD data_lod{slot_offset};
1056 1057
    feed_vec_[i]->set_lod(data_lod);
    if (use_slots_is_dense_[i]) {
1058 1059 1060 1061
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
1062
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
1063 1064
    }
  }
X
xjqbest 已提交
1065
#endif
1066 1067
}

H
hutuxian 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
template <typename T>
void PrivateInstantDataFeed<T>::PutToFeedVec() {
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    const auto& type = ins_vec_[i].GetType();
    const auto& offset = ins_vec_[i].GetOffset();
    int total_instance = static_cast<int>(offset.back());

    if (type[0] == 'f') {  // float
      const auto& feasign = ins_vec_[i].GetFloatData();
1078 1079 1080
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0], total_instance * sizeof(float));
H
hutuxian 已提交
1081 1082 1083 1084
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      const auto& feasign = ins_vec_[i].GetUint64Data();
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
1085 1086 1087
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0],
                       total_instance * sizeof(int64_t));
H
hutuxian 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
    }

    LoD data_lod{offset};
    feed_vec_[i]->set_lod(data_lod);
    if (use_slots_is_dense_[i]) {
      int64_t total_dims = 1;
      for (const auto e : use_slots_shape_[i]) {
        total_dims *= e;
      }
      PADDLE_ENFORCE(
          total_dims == total_instance,
          "The actual data size of slot[%s] doesn't match its declaration",
          use_slots_[i].c_str());
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
    }
  }
}

template <typename T>
int PrivateInstantDataFeed<T>::Next() {
  if (ParseOneMiniBatch()) {
    PutToFeedVec();
    return ins_vec_[0].GetBatchSize();
  }
  Postprocess();

  std::string filename;
  if (!PickOneFile(&filename)) {
    return -1;
  }
  if (!Preprocess(filename)) {
    return -1;
  }

  PADDLE_ENFORCE(true == ParseOneMiniBatch(), "Fail to parse mini-batch data");
  PutToFeedVec();
  return ins_vec_[0].GetBatchSize();
}

template <typename T>
void PrivateInstantDataFeed<T>::Init(const DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

  PADDLE_ENFORCE(data_feed_desc.has_multi_slot_desc(),
                 "Multi_slot_desc has not been set.");
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
  multi_inductive_shape_index_.resize(all_slot_num);
  use_slots_.clear();
  use_slots_is_dense_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
      std::vector<int> local_shape;
      if (slot.is_dense()) {
1155
        for (int j = 0; j < slot.shape_size(); ++j) {
H
hutuxian 已提交
1156 1157 1158 1159 1160
          if (slot.shape(j) == -1) {
            multi_inductive_shape_index_[i].push_back(j);
          }
        }
      }
1161
      for (int j = 0; j < slot.shape_size(); ++j) {
H
hutuxian 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
        local_shape.push_back(slot.shape(j));
      }
      use_slots_shape_.push_back(local_shape);
    }
  }
  feed_vec_.resize(use_slots_.size());
  ins_vec_.resize(use_slots_.size());

  finish_init_ = true;
}

template class PrivateInstantDataFeed<std::vector<MultiSlotType>>;

bool MultiSlotFileInstantDataFeed::Preprocess(const std::string& filename) {
  fd_ = open(filename.c_str(), O_RDONLY);
  PADDLE_ENFORCE(fd_ != -1, "Fail to open file: %s", filename.c_str());

  struct stat sb;
  fstat(fd_, &sb);
  end_ = static_cast<size_t>(sb.st_size);

  buffer_ =
      reinterpret_cast<char*>(mmap(NULL, end_, PROT_READ, MAP_PRIVATE, fd_, 0));
  PADDLE_ENFORCE(buffer_ != MAP_FAILED, strerror(errno));

  offset_ = 0;
  return true;
}

bool MultiSlotFileInstantDataFeed::Postprocess() {
  if (buffer_ != nullptr) {
    munmap(buffer_, end_);
    buffer_ = nullptr;
  }
  if (fd_ != -1) {
    close(fd_);
    fd_ = -1;
    end_ = 0;
    offset_ = 0;
  }
  return true;
}

bool MultiSlotFileInstantDataFeed::ParseOneMiniBatch() {
  if (offset_ == end_) {
    return false;
  }

  batch_size_ = 0;
  while (batch_size_ < default_batch_size_ && offset_ < end_) {
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      char type = all_slots_type_[i][0];

      uint16_t num = *reinterpret_cast<uint16_t*>(buffer_ + offset_);
      PADDLE_ENFORCE(
          num,
          "The number of ids can not be zero, you need padding "
          "it in data generator; or if there is something wrong with "
          "the data, please check if the data contains unresolvable "
          "characters.");
      offset_ += sizeof(uint16_t);

      if (idx != -1) {
        int inductive_size = multi_inductive_shape_index_[i].size();
        if (UNLIKELY(batch_size_ == 0)) {
          ins_vec_[idx].Init(all_slots_type_[i], default_batch_size_ * num);
          ins_vec_[idx].InitOffset(default_batch_size_);
          uint64_t* inductive_shape =
              reinterpret_cast<uint64_t*>(buffer_ + offset_);
          for (int inductive_id = 0; inductive_id < inductive_size;
               ++inductive_id) {
            use_slots_shape_[i][multi_inductive_shape_index_[i][inductive_id]] =
                static_cast<int>(*(inductive_shape + inductive_id));
          }
        }
        num -= inductive_size;
        offset_ += sizeof(uint64_t) * inductive_size;

        if (type == 'f') {
          ins_vec_[idx].AppendValues(
              reinterpret_cast<float*>(buffer_ + offset_), num);
          offset_ += num * sizeof(float);
        } else if (type == 'u') {
          ins_vec_[idx].AppendValues(
              reinterpret_cast<uint64_t*>(buffer_ + offset_), num);
          offset_ += num * sizeof(uint64_t);
        }
      } else {
        if (type == 'f') {
          offset_ += num * sizeof(float);
        } else if (type == 'u') {
          offset_ += num * sizeof(uint64_t);
        }
      }
    }
    ++batch_size_;
    // OPTIMIZE: It is better to insert check codes between instances for format
    // checking
  }

  PADDLE_ENFORCE(batch_size_ == default_batch_size_ || offset_ == end_,
                 "offset_ != end_");
  return true;
}
#endif

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
bool PaddleBoxDataFeed::Start() {
#ifdef _LINUX
  int phase = GetCurrentPhase();  // join: 1, update: 0
  this->CheckSetFileList();
  if (enable_pv_merge_ && phase == 1) {
    // join phase : input_pv_channel to output_pv_channel
    if (output_pv_channel_->Size() == 0 && input_pv_channel_->Size() != 0) {
      std::vector<PvInstance> data;
      input_pv_channel_->Read(data);
      output_pv_channel_->Write(std::move(data));
    }
  } else {
    // input_channel to output
    if (output_channel_->Size() == 0 && input_channel_->Size() != 0) {
      std::vector<Record> data;
      input_channel_->Read(data);
      output_channel_->Write(std::move(data));
    }
  }
#endif
  this->finish_start_ = true;
  return true;
}

int PaddleBoxDataFeed::Next() {
#ifdef _LINUX
  int phase = GetCurrentPhase();  // join: 1, update: 0
  this->CheckStart();
  if (enable_pv_merge_ && phase == 1) {
    // join phase : output_pv_channel to consume_pv_channel
    CHECK(output_pv_channel_ != nullptr);
    CHECK(consume_pv_channel_ != nullptr);
    VLOG(3) << "output_pv_channel_ size=" << output_pv_channel_->Size()
            << ", consume_pv_channel_ size=" << consume_pv_channel_->Size()
            << ", thread_id=" << thread_id_;
    int index = 0;
    PvInstance pv_instance;
    std::vector<PvInstance> pv_vec;
    pv_vec.reserve(this->pv_batch_size_);
    while (index < this->pv_batch_size_) {
      if (output_pv_channel_->Size() == 0) {
        break;
      }
      output_pv_channel_->Get(pv_instance);
      pv_vec.push_back(pv_instance);
      ++index;
      consume_pv_channel_->Put(std::move(pv_instance));
    }
    this->batch_size_ = index;
    VLOG(3) << "pv_batch_size_=" << this->batch_size_
            << ", thread_id=" << thread_id_;
    if (this->batch_size_ != 0) {
      PutToFeedVec(pv_vec);
    } else {
      VLOG(3) << "finish reading, output_pv_channel_ size="
              << output_pv_channel_->Size()
              << ", consume_pv_channel_ size=" << consume_pv_channel_->Size()
              << ", thread_id=" << thread_id_;
    }
    return this->batch_size_;
  } else {
    this->batch_size_ = MultiSlotInMemoryDataFeed::Next();
    return this->batch_size_;
  }
#else
  return 0;
#endif
}

void PaddleBoxDataFeed::Init(const DataFeedDesc& data_feed_desc) {
  MultiSlotInMemoryDataFeed::Init(data_feed_desc);
  rank_offset_name_ = data_feed_desc.rank_offset();
  pv_batch_size_ = data_feed_desc.pv_batch_size();
}

void PaddleBoxDataFeed::GetRankOffset(const std::vector<PvInstance>& pv_vec,
                                      int ins_number) {
  int index = 0;
  int max_rank = 3;  // the value is setting
  int row = ins_number;
  int col = max_rank * 2 + 1;
  int pv_num = pv_vec.size();

  std::vector<int> rank_offset_mat(row * col, -1);
  rank_offset_mat.shrink_to_fit();

  for (int i = 0; i < pv_num; i++) {
    auto pv_ins = pv_vec[i];
    int ad_num = pv_ins->ads.size();
    int index_start = index;
    for (int j = 0; j < ad_num; ++j) {
      auto ins = pv_ins->ads[j];
      int rank = -1;
      if ((ins->cmatch == 222 || ins->cmatch == 223) &&
          ins->rank <= static_cast<uint32_t>(max_rank) && ins->rank != 0) {
        rank = ins->rank;
      }

      rank_offset_mat[index * col] = rank;
      if (rank > 0) {
        for (int k = 0; k < ad_num; ++k) {
          auto cur_ins = pv_ins->ads[k];
          int fast_rank = -1;
          if ((cur_ins->cmatch == 222 || cur_ins->cmatch == 223) &&
              cur_ins->rank <= static_cast<uint32_t>(max_rank) &&
              cur_ins->rank != 0) {
            fast_rank = cur_ins->rank;
          }

          if (fast_rank > 0) {
            int m = fast_rank - 1;
            rank_offset_mat[index * col + 2 * m + 1] = cur_ins->rank;
            rank_offset_mat[index * col + 2 * m + 2] = index_start + k;
          }
        }
      }
      index += 1;
    }
  }

  int* rank_offset = rank_offset_mat.data();
  int* tensor_ptr = rank_offset_->mutable_data<int>({row, col}, this->place_);
  CopyToFeedTensor(tensor_ptr, rank_offset, row * col * sizeof(int));
}

void PaddleBoxDataFeed::AssignFeedVar(const Scope& scope) {
  MultiSlotInMemoryDataFeed::AssignFeedVar(scope);
  // set rank offset memory
  int phase = GetCurrentPhase();  // join: 1, update: 0
  if (enable_pv_merge_ && phase == 1) {
    rank_offset_ = scope.FindVar(rank_offset_name_)->GetMutable<LoDTensor>();
  }
}

void PaddleBoxDataFeed::PutToFeedVec(const std::vector<PvInstance>& pv_vec) {
#ifdef _LINUX
  int ins_number = 0;
  std::vector<Record*> ins_vec;
  for (auto& pv : pv_vec) {
    ins_number += pv->ads.size();
    for (auto ins : pv->ads) {
      ins_vec.push_back(ins);
    }
  }
  GetRankOffset(pv_vec, ins_number);
  PutToFeedVec(ins_vec);
#endif
}

int PaddleBoxDataFeed::GetCurrentPhase() {
#ifdef PADDLE_WITH_BOX_PS
  auto box_ptr = paddle::framework::BoxWrapper::GetInstance();
  return box_ptr->PassFlag();  // join: 1, update: 0
#else
  LOG(WARNING) << "It should be complied with BOX_PS...";
  return current_phase_;
#endif
}

void PaddleBoxDataFeed::PutToFeedVec(const std::vector<Record*>& ins_vec) {
#ifdef _LINUX
  std::vector<std::vector<float>> batch_float_feasigns(use_slots_.size(),
                                                       std::vector<float>());
  std::vector<std::vector<uint64_t>> batch_uint64_feasigns(
      use_slots_.size(), std::vector<uint64_t>());
  std::vector<std::vector<size_t>> offset(use_slots_.size(),
                                          std::vector<size_t>{0});
  std::vector<bool> visit(use_slots_.size(), false);
  ins_content_vec_.clear();
  ins_content_vec_.reserve(ins_vec.size());
  ins_id_vec_.clear();
  ins_id_vec_.reserve(ins_vec.size());
  for (size_t i = 0; i < ins_vec.size(); ++i) {
    auto r = ins_vec[i];
    ins_id_vec_.push_back(r->ins_id_);
    ins_content_vec_.push_back(r->content_);
    for (auto& item : r->float_feasigns_) {
      batch_float_feasigns[item.slot()].push_back(item.sign().float_feasign_);
      visit[item.slot()] = true;
    }
    for (auto& item : r->uint64_feasigns_) {
      batch_uint64_feasigns[item.slot()].push_back(item.sign().uint64_feasign_);
      visit[item.slot()] = true;
    }
    for (size_t j = 0; j < use_slots_.size(); ++j) {
      const auto& type = all_slots_type_[j];
      if (visit[j]) {
        visit[j] = false;
      } else {
        // fill slot value with default value 0
        if (type[0] == 'f') {  // float
          batch_float_feasigns[j].push_back(0.0);
        } else if (type[0] == 'u') {  // uint64
          batch_uint64_feasigns[j].push_back(0);
        }
      }
      // get offset of this ins in this slot
      if (type[0] == 'f') {  // float
        offset[j].push_back(batch_float_feasigns[j].size());
      } else if (type[0] == 'u') {  // uint64
        offset[j].push_back(batch_uint64_feasigns[j].size());
      }
    }
  }

  for (size_t i = 0; i < use_slots_.size(); ++i) {
    if (feed_vec_[i] == nullptr) {
      continue;
    }
    int total_instance = offset[i].back();
    const auto& type = all_slots_type_[i];
    if (type[0] == 'f') {  // float
      float* feasign = batch_float_feasigns[i].data();
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(float));
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      uint64_t* feasign = batch_uint64_feasigns[i].data();
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(int64_t));
    }
    auto& slot_offset = offset[i];
    LoD data_lod{slot_offset};
    feed_vec_[i]->set_lod(data_lod);
    if (use_slots_is_dense_[i]) {
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
    }
  }
#endif
}

W
Wang Guibao 已提交
1506 1507
}  // namespace framework
}  // namespace paddle