api_base.py 36.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re

17
PREFIX_TENSOR_NAME = 'input_'
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
PREFIX_META_TENSOR_NAME = 'meta_'


class BaseAPI(object):
    def __init__(self, api_item_yaml):
        self.api = self.get_api_name(api_item_yaml)

        # inputs:
        #     names : [], list of input names
        #     input_info : {input_name : type}
        # attrs:
        #     names : [], list of attribute names
        #     attr_info : { attr_name : (type, default_values)}
        # outputs:
        #     names : [], list of output names
        #     types : [], list of output types
34
        #     out_size_expr : [], expression for getting size of vector<Tensor>
35
        self.inputs, self.attrs, self.outputs, self.optional_vars = self.parse_args(
36 37 38 39 40 41 42
            self.api, api_item_yaml)

        self.is_base_api = True
        if 'invoke' in api_item_yaml:
            self.is_base_api = False
            self.invoke = api_item_yaml['invoke']
        else:
43 44 45
            if 'infer_meta' in api_item_yaml:
                self.infer_meta = self.parse_infer_meta(api_item_yaml[
                    'infer_meta'])
46 47
            self.kernel = self.parse_kernel(api_item_yaml['kernel'])
            self.support_selected_rows_kernel = False if len(self.kernel[
48 49
                'func']) == 1 or not self.kernel['func'][1].endswith(
                    '_sr') else True
50
            self.data_transform = self.parse_data_transform(api_item_yaml)
51
            self.inplace_map, self.view_map = {}, {}
52 53 54 55

    def get_api_name(self, api_item_yaml):
        return api_item_yaml['api']

56 57 58
    def get_api_func_name(self):
        return self.api

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    def get_input_tensor_args(self, inplace_flag=False):
        input_args = []
        inplace_type_map = {
            "const Tensor&": "Tensor&",
            "const std::vector<Tensor>&": "std::vector<Tensor>&"
        }
        for name in self.inputs['names']:
            name = name.split('@')[0]
            if inplace_flag and name in self.inplace_map.values():
                input_args.append(inplace_type_map[self.inputs['input_info'][
                    name]] + ' ' + name)
            else:
                input_args.append(self.inputs['input_info'][name] + ' ' + name)
        return input_args

    def get_declare_args(self, inplace_flag=False):
        declare_args = self.get_input_tensor_args(inplace_flag)
        for name in self.attrs['names']:
            default_value = ''
            if self.attrs['attr_info'][name][1] is not None:
                default_value = ' = ' + self.attrs['attr_info'][name][1]
            declare_args.append(self.attrs['attr_info'][name][0] + ' ' + name +
                                default_value)
82

83 84 85 86 87 88 89 90
        return ", ".join(declare_args)

    def get_define_args(self, inplace_flag=False):
        define_args = self.get_input_tensor_args(inplace_flag)
        for name in self.attrs['names']:
            define_args.append(self.attrs['attr_info'][name][0] + ' ' + name)

        return ", ".join(define_args)
91

92
    def parse_args(self, api_name, api_item_yaml):
93 94 95 96 97
        optional_vars = []
        if 'optional' in api_item_yaml:
            optional_vars = [
                item.strip() for item in api_item_yaml['optional'].split(',')
            ]
98
        inputs, attrs = self.parse_input_and_attr(
99
            api_name, api_item_yaml['args'], optional_vars)
100
        output_type_list, output_names, out_size_expr = self.parse_output(
101 102 103 104
            api_name, api_item_yaml['output'])
        return inputs, attrs, {
            'names': output_names,
            'types': output_type_list,
105 106
            'out_size_expr': out_size_expr
        }, optional_vars
107

108
    def parse_input_and_attr(self, api_name, args_config, optional_vars=[]):
109 110 111 112 113 114 115
        inputs = {'names': [], 'input_info': {}}
        attrs = {'names': [], 'attr_info': {}}
        args_str = args_config.strip()
        assert args_str.startswith('(') and args_str.endswith(')'), \
            f"Args declaration should start with '(' and end with ')', please check the args of {api_name} in yaml."
        args_str = args_str[1:-1]
        args_list = args_str.split(',')
Z
zyfncg 已提交
116 117 118 119
        input_types_map = {
            'Tensor': 'const Tensor&',
            'Tensor[]': 'const std::vector<Tensor>&'
        }
120
        attr_types_map = {
121
            'IntArray': 'const IntArray&',
122
            'Scalar': 'const Scalar&',
123 124 125 126
            'Scalar(int)': 'const Scalar&',
            'Scalar(int64_t)': 'const Scalar&',
            'Scalar(float)': 'const Scalar&',
            'Scalar(dobule)': 'const Scalar&',
127
            'int': 'int',
128 129
            'int32_t': 'int32_t',
            'int64_t': 'int64_t',
130 131 132 133 134
            'long': 'long',
            'size_t': 'size_t',
            'float': 'float',
            'double': 'double',
            'bool': 'bool',
135
            'str': 'const std::string&',
136
            'Place': 'const Place&',
137 138
            'DataLayout': 'DataLayout',
            'DataType': 'DataType',
139 140
            'int64_t[]': 'const std::vector<int64_t>&',
            'int[]': 'const std::vector<int>&'
141 142
        }
        optional_types_trans = {
143
            'Tensor': 'const paddle::optional<Tensor>&',
144 145
            'Tensor[]': 'const paddle::optional<std::vector<Tensor>>&',
            'int': 'paddle::optional<int>',
146 147
            'int32_t': 'paddle::optional<int32_t>',
            'int64_t': 'paddle::optional<int64_t>',
148 149 150
            'float': 'paddle::optional<float>',
            'double': 'paddle::optional<double>',
            'bool': 'paddle::optional<bool>',
151
            'Place': 'paddle::optional<const Place&>',
152
            'DataLayout': 'paddle::optional<DataLayout>',
153
            'DataType': 'paddle::optional<DataType>'
154 155
        }

156 157
        for item in args_list:
            item = item.strip()
Z
zyfncg 已提交
158
            type_and_name = item.split(' ')
159 160
            # match the input tensor
            has_input = False
Z
zyfncg 已提交
161 162 163
            for in_type_symbol, in_type in input_types_map.items():
                if type_and_name[0] == in_type_symbol:
                    input_name = type_and_name[1].strip()
164 165 166 167 168
                    assert len(input_name) > 0, \
                        f"The input tensor name should not be empty. Please check the args of {api_name} in yaml."
                    assert len(attrs['names']) == 0, \
                        f"The input Tensor should appear before attributes. please check the position of {api_name}:input({input_name}) in yaml"

169 170 171
                    if input_name in optional_vars:
                        in_type = optional_types_trans[in_type_symbol]

172 173 174 175 176 177 178 179
                    inputs['names'].append(input_name)
                    inputs['input_info'][input_name] = in_type
                    has_input = True
                    break
            if has_input:
                continue

            # match the attribute
Z
zyfncg 已提交
180 181 182
            for attr_type_symbol, attr_type in attr_types_map.items():
                if type_and_name[0] == attr_type_symbol:
                    attr_name = item[len(attr_type_symbol):].strip()
183 184 185 186 187 188 189 190
                    assert len(attr_name) > 0, \
                        f"The attribute name should not be empty. Please check the args of {api_name} in yaml."
                    default_value = None
                    if '=' in attr_name:
                        attr_infos = attr_name.split('=')
                        attr_name = attr_infos[0].strip()
                        default_value = attr_infos[1].strip()

191 192 193
                    if attr_name in optional_vars:
                        attr_type = optional_types_trans[attr_type_symbol]

194 195 196 197 198
                    default_value_str = "" if default_value is None else '=' + default_value
                    attrs['names'].append(attr_name)
                    attrs['attr_info'][attr_name] = (attr_type, default_value)
                    break

199
        return inputs, attrs
200 201 202

    def parse_output(self, api_name, output_config):
        def parse_output_item(output_item):
Z
zyfncg 已提交
203 204 205 206
            output_type_map = {
                'Tensor': 'Tensor',
                'Tensor[]': 'std::vector<Tensor>'
            }
207 208 209 210 211 212 213 214 215 216 217 218 219 220
            result = re.search(
                r"(?P<out_type>[a-zA-Z0-9_[\]]+)\s*(?P<name>\([a-zA-Z0-9_@]+\))?\s*(?P<expr>\{[^\}]+\})?",
                output_item)
            assert result is not None, f"{api_name} : the output config parse error."
            out_type = result.group('out_type')
            assert out_type in output_type_map, \
                f"{api_name} : Output type error: the output type only support Tensor and Tensor[], \
                  but now is {out_type}."

            out_name = 'out' if result.group('name') is None else result.group(
                'name')[1:-1]
            out_size_expr = None if result.group(
                'expr') is None else result.group('expr')[1:-1]
            return output_type_map[out_type], out_name, out_size_expr
221 222 223 224

        temp_list = output_config.split(',')

        if len(temp_list) == 1:
225
            out_type, out_name, size_expr = parse_output_item(temp_list[0])
226
            return [out_type], [out_name], [size_expr]
227 228 229
        else:
            out_type_list = []
            out_name_list = []
230
            out_size_expr_list = []
231
            for output_item in temp_list:
232
                out_type, out_name, size_expr = parse_output_item(output_item)
233 234
                out_type_list.append(out_type)
                out_name_list.append(out_name)
235
                out_size_expr_list.append(size_expr)
236

237
            return out_type_list, out_name_list, out_size_expr_list
238

239 240 241 242 243 244 245 246 247 248 249 250 251 252
    def parse_infer_meta(self, infer_meta_config):
        infer_meta = infer_meta_config
        if 'param' not in infer_meta_config:
            infer_meta['param'] = None

        return infer_meta

    def parse_kernel(self, kernel_config):
        # kernel :
        #    func : [], Kernel functions (example: scale, scale_sr)
        #    param : [], Input params of kernel
        #    backend : str, the names of param to choose the kernel backend, default is None
        #    layout : str, the names of param to choose the kernel layout, default is None
        #    data_type : str, the names of param to choose the kernel data_type, default is None
253
        #    dispatch : {}, the key is kernel_func, the value is type of inputs and outputs for kernel (example: {kernel_name : (['dense','sparse_coo']#input,['sparse_coo']#output)})
254 255 256 257 258
        kernel = {
            'func': [],
            'param': None,
            'backend': None,
            'layout': None,
Z
zyfncg 已提交
259
            'data_type': None,
260 261
            'use_gpudnn': 'false',
            'dispatch': {}
262 263 264 265 266 267 268 269 270
        }
        if 'backend' in kernel_config and len(kernel_config['backend']) > 0:
            kernel['backend'] = kernel_config['backend']
        if 'layout' in kernel_config and len(kernel_config['layout']) > 0:
            kernel['layout'] = kernel_config['layout']
        if 'data_type' in kernel_config and len(kernel_config['data_type']) > 0:
            kernel['data_type'] = kernel_config['data_type']
        if 'param' in kernel_config:
            kernel['param'] = kernel_config['param']
271 272 273 274
        if 'use_gpudnn' in kernel_config:
            kernel['use_gpudnn'] = kernel_config['use_gpudnn']
            if isinstance(kernel['use_gpudnn'], bool):
                kernel['use_gpudnn'] = str(kernel['use_gpudnn']).lower()
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
        kernel_funcs = re.compile(r'([a-zA-Z0-9_]+)\s*({[^}]+})?').findall(
            kernel_config['func'])

        def parse_kernel_in_out_type(in_out_str):
            if len(in_out_str) == 0:
                return None
            tmp_in_out_list = in_out_str[1:-1].split('->')
            inputs = [item.strip() for item in tmp_in_out_list[0].split(',')]
            outputs = [item.strip() for item in tmp_in_out_list[1].split(',')]
            return (inputs, outputs)

        for func_item in kernel_funcs:
            kernel['func'].append(func_item[0])
            kernel['dispatch'][func_item[0]] = parse_kernel_in_out_type(
                func_item[1])
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304

        return kernel

    def parse_data_transform(self, api_item_yaml):
        data_transform = {'skip_transform': [], 'support_trans_dtype': []}
        if 'data_transform' in api_item_yaml:
            if 'skip_transform' in api_item_yaml['data_transform']:
                data_transform['skip_transform'] = api_item_yaml[
                    'data_transform']['skip_transform']
            if 'support_trans_dtype' in api_item_yaml['data_transform']:
                data_transform['support_trans_dtype'] = api_item_yaml[
                    'data_transform']['support_trans_dtype']

        return data_transform

305
    # Override by child class
306
    def get_return_type(self, inplace_flag=False):
307 308 309
        return None

    def gene_api_declaration(self):
310 311 312 313 314
        api_declaration = ""
        api_func_name = self.get_api_func_name()
        if api_func_name[-1] != '_':
            api_declaration = f"""
PADDLE_API {self.get_return_type()} {api_func_name}({self.get_declare_args()});
315 316
"""

317 318 319
        if self.is_base_api and len(self.inplace_map) > 0:
            if api_func_name[-1] != '_':
                api_func_name += '_'
320
            api_declaration = api_declaration + f"""
321
PADDLE_API {self.get_return_type(inplace_flag=True)} {api_func_name}({self.get_declare_args(inplace_flag=True)});
322 323 324 325
"""

        return api_declaration

326 327 328 329 330 331 332 333 334
    # Backward API Override this method
    def gene_kernel_backend_select(self):
        backend_select_code = ""
        if self.kernel['backend'] is not None:
            if '>' in self.kernel['backend']:
                vars_list = self.kernel['backend'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{self.api} api: The number of params to set backend with '>' only allows 2, but received {len(vars_list)}."
335
                assert (vars_list[0].strip() in self.attrs['names']) and (self.attrs['attr_info'][vars_list[0].strip()][0] == 'const Place&'), \
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
                    f"{self.api} api: When use '>' to set kernel backend, the first param should be a attribute with Place type."
                backend_select_code = f"""
  kernel_backend = ParseBackendWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                backend_args = [
                    ele.strip() for ele in self.kernel['backend'].split(',')
                ]
                backend_select_code = f"""
  kernel_backend = ParseBackend({", ".join(backend_args)});
"""

        return backend_select_code

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
    def gene_kernel_select(self) -> str:
        api = self.api
        input_names = self.inputs['names']
        attrs = self.attrs
        kernel = self.kernel

        kernel_key_item_init = """
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
"""
        # Check the tensor options
        attr_backend_count = 0
        attr_layout_count = 0
        attr_data_type_count = 0
        for attr_name in attrs['names']:
367
            if attrs['attr_info'][attr_name][0] == 'const Place&':
368
                assert kernel['backend'] is not None, \
369
                    f"{api} api: When there is a parameter with 'Place' type in attributes, you must set backend of kernel manually."
370 371 372 373 374 375 376 377 378 379 380
                attr_backend_count = attr_backend_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataLayout':
                assert kernel['layout'] is not None, \
                    f"{api} api: When there is a parameter with 'DataLayout' type in attributes, you must set layout of kernel manually."
                attr_layout_count = attr_layout_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataType':
                assert kernel['data_type'] is not None, \
                    f"{api} api: When there is a parameter with 'DataType' type in attributes, you must set data_type of kernel manually."
                attr_data_type_count = attr_data_type_count + 1

        # preprocess kernel configures
381
        kernel_select_code = self.gene_kernel_backend_select()
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419

        if kernel['layout'] is not None:
            if '>' in kernel['layout']:
                vars_list = kernel['layout'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set layout with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataLayout', \
                    f"{api} api: When use '>' to set kernel layout, the first param should be a attribute with DataLayout type."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayoutWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['layout'].split(',')
                assert len(
                    vars_list
                ) == 1, f"{api} api: The number of params to set layout must be 1, but received {len(vars_list)}."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayout({vars_list[0].strip()});
"""

        if kernel['data_type'] is not None:
            if '>' in kernel['data_type']:
                vars_list = kernel['data_type'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set data_type with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataType', \
                    f"{api} api: When use '>' to set kernel data_type, the first param should be a attribute with DataType type."
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataTypeWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['data_type'].split(',')
                assert len(
                    vars_list
420
                ) == 1, f"{api} api: The number of params to set data_type only allows 1, but received {len(vars_list)}."
421 422 423 424 425
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataType({vars_list[0].strip()});
"""

        if len(input_names) == 0:
426
            assert attr_backend_count > 0 and attr_data_type_count > 0, \
427
                f"{api} api: When there is no input tensor, the args must have 'Place' and 'DataType'."
428 429 430 431 432 433 434 435 436 437 438

        kernel_select_args = ""
        for input_name in input_names:
            kernel_select_args = kernel_select_args + input_name + ", "

        if len(kernel_select_args) > 2:
            kernel_select_args = kernel_select_args[:-2]

        kernel_select_code = kernel_key_item_init + kernel_select_code

        if len(input_names) > 0:
439 440
            if self.support_selected_rows_kernel:
                kernel_select_code = kernel_select_code + f"""
441
  KernelType kernel_type = ParseKernelTypeByInputArgs({", ".join(input_names)});
442 443
"""

444 445 446 447 448
            kernel_select_code = kernel_select_code + f"""
  if (kernel_backend == Backend::UNDEFINED
        || kernel_layout == DataLayout::UNDEFINED
        || kernel_data_type == DataType::UNDEFINED ) {{
    auto kernel_key_set = ParseKernelKeyByInputArgs({kernel_select_args});
449
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
450 451 452 453 454 455 456 457 458 459 460 461 462
    if (kernel_backend == Backend::UNDEFINED) {{
      kernel_backend = kernel_key.backend();
    }}
    if (kernel_layout == DataLayout::UNDEFINED) {{
      kernel_layout = kernel_key.layout();
    }}
    if (kernel_data_type == DataType::UNDEFINED) {{
      kernel_data_type = kernel_key.dtype();
    }}
  }}"""

        return kernel_select_code

463
    def gene_infer_meta(self, kernel_output_names, code_indent) -> str:
464 465 466 467
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        infer_meta = self.infer_meta

468 469
        infer_meta_params = infer_meta['param'] if infer_meta[
            'param'] is not None else input_names + attr_names
470 471 472 473 474
        # generate meta tensors
        meta_tensor_code = ""
        param_code = ""
        for param in infer_meta_params:
            if param in input_names:
475 476 477 478 479
                if self.inputs['input_info'][param] == "const Tensor&":
                    param_code = param_code + "MakeMetaTensor(*" + PREFIX_TENSOR_NAME + param + "), "
                elif self.inputs['input_info'][
                        param] == "const std::vector<Tensor>&":
                    meta_tensor_code = meta_tensor_code + f"""
480
{code_indent}  auto {param}_meta_vec = MakeMetaTensor({PREFIX_TENSOR_NAME}{param});
481
{code_indent}  std::vector<const phi::MetaTensor*> {param}_metas({param}_meta_vec.size());
482 483 484 485 486 487 488
{code_indent}  for (size_t i = 0; i < {param}_meta_vec.size(); ++i) {{
{code_indent}    {param}_metas[i] = &{param}_meta_vec[i];
{code_indent}  }}
"""

                    param_code = param_code + param + "_metas, "
                elif param in self.optional_vars:
489
                    param_code = param_code + "MakeMetaTensor(" + PREFIX_TENSOR_NAME + param + "), "
490
                else:
491 492 493
                    raise ValueError(
                        f"{self.api} : Param of infer_meta error : {self.inputs['input_info'][param]} type is not supported."
                    )
494 495 496 497 498 499 500 501 502
            elif param in attr_names:
                param_code = param_code + param + ", "
            elif isinstance(param, str):
                param_code = param_code + "\"" + param + "\", "
            elif isinstance(param, bool):
                param_code = param_code + str(param).lower() + ", "
            else:
                param_code = param_code + str(param) + ", "

503 504 505 506 507 508
        for i, out_name in enumerate(kernel_output_names):
            if self.outputs['types'][i] == 'std::vector<Tensor>':
                meta_tensor_code = meta_tensor_code + f"""
{code_indent}  auto {out_name}_{PREFIX_META_TENSOR_NAME}vec = MakeMetaTensor({out_name});
{code_indent}  std::vector<phi::MetaTensor*> {out_name}_metas({out_name}_{PREFIX_META_TENSOR_NAME}vec.size());
{code_indent}  for (size_t i = 0; i < {out_name}_{PREFIX_META_TENSOR_NAME}vec.size(); ++i) {{
509
{code_indent}    {out_name}_metas[i] = {out_name}[i] ? &{out_name}_{PREFIX_META_TENSOR_NAME}vec[i] : nullptr;
510 511 512 513 514 515 516
{code_indent}  }}"""

                param_code = param_code + out_name + '_metas, '
            else:
                meta_tensor_code = meta_tensor_code + code_indent + "  phi::MetaTensor " + out_name.replace(
                    'kernel_',
                    PREFIX_META_TENSOR_NAME) + "(" + out_name + ");\n"
517 518 519 520
                if len(kernel_output_names) == 1:
                    param_code = param_code + f"&{out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)}, "
                else:
                    param_code = param_code + f"{out_name} ? &{out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)} : nullptr, "
521

522 523
        param_code = param_code[:-2]
        return f"""{meta_tensor_code}
524
{code_indent}  phi::{infer_meta['func']}({param_code});
525 526
"""

527
    def get_kernel_args(self, code_indent):
528
        input_trans_map = {
529
            'const Tensor&': 'const phi::DenseTensor&',
530
            'const std::vector<Tensor>&':
531
            'const std::vector<const phi::DenseTensor*>&',
H
hong 已提交
532 533
            'const paddle::optional<Tensor&>':
            'paddle::optional<const phi::DenseTensor&>',
534 535
            'const paddle::optional<Tensor>&':
            'const paddle::optional<phi::DenseTensor>&',
536 537
            'const paddle::optional<std::vector<Tensor>>&':
            'paddle::optional<const std::vector<phi::DenseTensor>&>'
538 539
        }
        out_trans_map = {
540 541
            'Tensor': 'phi::DenseTensor*',
            'std::vector<Tensor>': 'std::vector<phi::DenseTensor*>&'
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
        }
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']
        kernel_args_type_list = ['const platform::DeviceContext&']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_tensor_code = ""
        for i, input_name in enumerate(input_names):
            # set input code
            if input_name in kernel_param:
                trans_flag = "{}"
                if input_name in self.data_transform['skip_transform']:
                    trans_flag = "{true}"
                elif input_name in self.data_transform['support_trans_dtype']:
                    trans_flag = "{false, true}"
561 562
                if input_name in self.optional_vars:
                    input_tensor_code = input_tensor_code + f"""
563
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = PrepareData({input_name}, kernel.InputAt({i}), {trans_flag});"""
564 565

                else:
566 567
                    if self.inputs['input_info'][input_name] == "const Tensor&":
                        input_tensor_code = input_tensor_code + f"""
568
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = PrepareData({input_name}, kernel.InputAt({i}), {trans_flag});"""
569

570 571 572 573 574 575 576 577 578 579 580 581
                    elif self.inputs['input_info'][
                            input_name] == "const std::vector<Tensor>&":
                        input_tensor_code = input_tensor_code + f"""
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_vec = PrepareData({input_name}, kernel.InputAt({i}), {trans_flag});
{code_indent}  std::vector<const phi::DenseTensor*> {PREFIX_TENSOR_NAME}{input_name}({PREFIX_TENSOR_NAME}{input_name}_vec->size());
{code_indent}  for (size_t i = 0; i < {PREFIX_TENSOR_NAME}{input_name}.size(); ++i) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name}[i] = &{PREFIX_TENSOR_NAME}{input_name}_vec->at(i);
{code_indent}  }}"""

                    else:
                        # do nothing
                        pass
582
            else:
583 584 585 586 587 588 589 590 591 592
                if input_name in self.optional_vars:
                    input_tensor_code = input_tensor_code + f"""
{code_indent}  {input_trans_map[input_infos[input_name]]} {PREFIX_TENSOR_NAME}{input_name}(paddle::none);
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_ptr = TensorToDenseTensor({input_name});
{code_indent}  if ({PREFIX_TENSOR_NAME}{input_name}_ptr) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name} = paddle::make_optional<const phi::DenseTensor&>(*{PREFIX_TENSOR_NAME}{input_name}_ptr);
{code_indent}  }}"""

                else:
                    input_tensor_code = input_tensor_code + f"""
593 594 595 596 597
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = TensorToDenseTensor({input_name});"""

        kernel_args = "*dev_ctx, "
        for param in kernel_param:
            if param in input_names:
598 599 600
                if param in self.optional_vars:
                    kernel_args = kernel_args + PREFIX_TENSOR_NAME + param + ", "
                else:
601 602 603
                    if self.inputs['input_info'][param] == "const Tensor&":
                        kernel_args = kernel_args + "*" + PREFIX_TENSOR_NAME + param + ", "
                    elif self.inputs['input_info'][
604
                            param] == "const std::vector<Tensor>&":
605 606 607 608
                        kernel_args = kernel_args + PREFIX_TENSOR_NAME + param + ", "
                    else:
                        # do nothing
                        pass
609 610
                kernel_in_type = input_trans_map[input_infos[param]]
                kernel_args_type_list.append(kernel_in_type)
611 612
            elif param in attr_names:
                # set attr for kernel_context
613 614 615
                if 'IntArray' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const phi::IntArray&')
                    param = 'phi::IntArray(' + param + ')'
616
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
617 618
                    kernel_args_type_list.append('const phi::Scalar&')
                    param = 'phi::Scalar(' + param + ')'
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
                else:
                    kernel_args_type_list.append(self.attrs['attr_info'][param][
                        0])
                kernel_args = kernel_args + param + ", "
            elif isinstance(param, bool):
                kernel_args = kernel_args + str(param).lower() + ", "
            else:
                kernel_args = kernel_args + str(param) + ", "

        for out_type in self.outputs['types']:
            kernel_args_type_list.append(out_trans_map[out_type])

        kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")"

        return input_tensor_code, kernel_args[:-2], kernel_signature

    def get_selected_rows_kernel_args(self, code_indent):
        input_trans_map = {
637
            'const Tensor&': 'const phi::SelectedRows&',
638
            'const paddle::optional<Tensor>&':
639
            'const paddle::optional<phi::SelectedRows>&'
640
        }
641
        out_trans_map = {'Tensor': 'phi::SelectedRows*'}
642 643 644 645 646 647 648 649 650 651 652 653
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']
        kernel_args_type_list = ['const platform::DeviceContext&']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_tensor_code = ""
        for i, input_name in enumerate(input_names):
            # set input code
654 655 656 657 658 659 660 661 662 663 664
            if input_name in self.optional_vars:
                input_tensor_code = input_tensor_code + f"""

{code_indent}  {input_trans_map[input_infos[input_name]]} {PREFIX_TENSOR_NAME}{input_name}(paddle::none);
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_ptr = TensorToSelectedRows({input_name});
{code_indent}  if ({PREFIX_TENSOR_NAME}{input_name}_ptr) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name} = paddle::make_optional<const phi::SelectedRows&>(*{PREFIX_TENSOR_NAME}{input_name}_ptr);
{code_indent}  }}"""

            else:
                input_tensor_code = input_tensor_code + f"""
665
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = TensorToSelectedRows({input_name});"""
666 667 668 669

        kernel_args = "*dev_ctx, "
        for param in kernel_param:
            if param in input_names:
670 671 672 673 674 675
                if param in self.optional_vars:
                    kernel_args = kernel_args + PREFIX_TENSOR_NAME + param + ", "
                else:
                    kernel_args = kernel_args + "*" + PREFIX_TENSOR_NAME + param + ", "
                kernel_in_type = input_trans_map[input_infos[param]]
                kernel_args_type_list.append(kernel_in_type)
676 677
            elif param in attr_names:
                # set attr for kernel_context
678 679 680
                if 'IntArray' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const phi::IntArray&')
                    param = 'phi::IntArray(' + param + ')'
681
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
682 683
                    kernel_args_type_list.append('const phi::Scalar&')
                    param = 'phi::Scalar(' + param + ')'
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
                else:
                    kernel_args_type_list.append(self.attrs['attr_info'][param][
                        0])
                kernel_args = kernel_args + param + ", "
            elif isinstance(param, bool):
                kernel_args = kernel_args + str(param).lower() + ", "
            else:
                kernel_args = kernel_args + str(param) + ", "

        for out_type in self.outputs['types']:
            kernel_args_type_list.append(out_trans_map[out_type])

        kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")"

        return input_tensor_code, kernel_args[:-2], kernel_signature

700 701
    # Override by child class
    def gene_return_code(self):
702
        return "return api_output;"
703

704
    # Override by child class
705 706 707 708 709
    def gene_output(self,
                    output_type_list,
                    set_out_func,
                    code_indent,
                    inplace_flag=False):
710 711
        return None, None, None

712
    def gen_dense_tensor_kernel_code(self, code_indent, inplace_flag=False):
713 714 715
        input_tensors, kernel_args, kernel_signature = self.get_kernel_args(
            code_indent)
        outputs_args, kernel_output_names, output_create = self.gene_output(
716
            self.outputs['types'], 'SetKernelOutput', code_indent, inplace_flag)
717
        api_func_name = self.get_api_func_name() + ('_' if inplace_flag else '')
Z
zyfncg 已提交
718
        cudnn_args = '' if self.kernel[
719
            'use_gpudnn'] == 'false' else ', ' + self.kernel['use_gpudnn']
720
        return f"""
F
From00 已提交
721
{code_indent}  VLOG(6) << "{self.api} API kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
722
{code_indent}  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
Z
zyfncg 已提交
723
{code_indent}      "{self.kernel['func'][0]}", {{kernel_backend, kernel_layout, kernel_data_type}}{cudnn_args});
724 725 726 727 728 729 730 731 732
{code_indent}  VLOG(6) << "{self.api} API kernel: " << kernel;

{code_indent}  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);
{input_tensors}
{output_create}
{self.gene_infer_meta(kernel_output_names, code_indent)}

{code_indent}  using kernel_signature = {kernel_signature};
{code_indent}  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
733
{code_indent}  {{
C
chenjian 已提交
734
{code_indent}    paddle::platform::RecordEvent kernel_record_event(\"{api_func_name} compute\", paddle::platform::TracerEventType::OperatorInner, 1);
735 736
{code_indent}    (*kernel_fn)({kernel_args}, {outputs_args});
{code_indent}  }}
737

738
{code_indent}  {self.gene_return_code()}"""
739

740
    def gen_selected_rows_kernel_code(self, code_indent, inplace_flag=False):
741 742 743
        input_tensors, kernel_args, kernel_signature = self.get_selected_rows_kernel_args(
            code_indent)
        outputs_args, kernel_output_names, output_create = self.gene_output(
744 745
            self.outputs['types'], 'SetSelectedRowsKernelOutput', code_indent,
            inplace_flag)
746
        api_func_name = self.get_api_func_name() + ('_' if inplace_flag else '')
747
        return f"""
748
{code_indent}  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
749 750 751 752 753 754 755 756 757 758 759
{code_indent}      "{self.kernel['func'][1]}", {{kernel_backend, kernel_layout, kernel_data_type}});
{code_indent}  VLOG(6) << "{self.api} API SelectedRows kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
{code_indent}  VLOG(6) << "{self.api} API SelectedRows kernel: " << kernel;

{code_indent}  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);
{input_tensors}
{output_create}
{self.gene_infer_meta(kernel_output_names, code_indent)}

{code_indent}  using kernel_signature = {kernel_signature};
{code_indent}  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
760
{code_indent}  {{
C
chenjian 已提交
761
{code_indent}    paddle::platform::RecordEvent kernel_record_event(\"{api_func_name} compute\", paddle::platform::TracerEventType::OperatorInner, 1);
762 763
{code_indent}    (*kernel_fn)({kernel_args}, {outputs_args});
{code_indent}  }}
764

765
{code_indent}  {self.gene_return_code()}"""
766

767
    def gene_base_api_code(self, inplace_flag=False):
768 769 770
        api_func_name = self.get_api_func_name()
        if inplace_flag and api_func_name[-1] != '_':
            api_func_name += '_'
771
        api_code = f"""
772
PADDLE_API {self.get_return_type(inplace_flag)} {api_func_name}({self.get_define_args(inplace_flag)}) {{
773
{self.gene_kernel_select()}
774
"""
775

776 777 778
        if self.support_selected_rows_kernel:
            code_indent = '  '
            return api_code + f"""
779
  if(kernel_type == KernelType::DENSE_TENSOR_KENREL){{
780
{self.gen_dense_tensor_kernel_code(code_indent, inplace_flag)}
781
  }} else {{
782
{self.gen_selected_rows_kernel_code(code_indent, inplace_flag)}
783
  }}
784
}}
785 786
"""

787 788 789 790
        else:
            code_indent = ''
            return api_code + self.gen_dense_tensor_kernel_code(
                code_indent, inplace_flag) + """
791
}
792 793
"""

794 795
    def gene_invoke_code(self, invoke_code, params_code):
        return f"""
796
PADDLE_API {self.get_return_type()} {self.api}({params_code}) {{
797 798 799
  return {invoke_code};
}}"""

800 801 802
    def gene_api_code(self):
        if self.is_base_api:
            api_code = self.gene_base_api_code()
803
            if len(self.inplace_map) > 0:
Z
zyfncg 已提交
804 805
                if self.api[-1] == '_':
                    api_code = ""
806 807 808
                api_code = api_code + self.gene_base_api_code(inplace_flag=True)
            return api_code

809
        else:
810 811
            invoke_func_name = self.invoke.split('(')[0].strip()
            if invoke_func_name in self.attrs['names']:
812
                # Adjust the param whose name is same with api invoked.
813
                pattern = r'\W' + invoke_func_name + '[^A-Za-z0-9_(]'
814 815 816 817 818 819 820

                def adjust_name(matched):
                    matched_str = matched.group()
                    return matched_str[0:-1] + '_val' + matched_str[-1]

                invoke_code = re.sub(pattern, adjust_name, self.invoke)
                params_code = re.sub(pattern, adjust_name,
821
                                     self.get_define_args())
822 823
            else:
                invoke_code = self.invoke
824 825
                params_code = self.get_define_args()
            return self.gene_invoke_code(invoke_code, params_code)