api_base.py 39.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re

17
PREFIX_TENSOR_NAME = 'input_'
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
PREFIX_META_TENSOR_NAME = 'meta_'


class BaseAPI(object):
    def __init__(self, api_item_yaml):
        self.api = self.get_api_name(api_item_yaml)

        # inputs:
        #     names : [], list of input names
        #     input_info : {input_name : type}
        # attrs:
        #     names : [], list of attribute names
        #     attr_info : { attr_name : (type, default_values)}
        # outputs:
        #     names : [], list of output names
        #     types : [], list of output types
34
        #     out_size_expr : [], expression for getting size of vector<Tensor>
35
        self.inputs, self.attrs, self.outputs, self.optional_vars = self.parse_args(
36 37 38 39 40 41 42
            self.api, api_item_yaml)

        self.is_base_api = True
        if 'invoke' in api_item_yaml:
            self.is_base_api = False
            self.invoke = api_item_yaml['invoke']
        else:
43 44 45
            if 'infer_meta' in api_item_yaml:
                self.infer_meta = self.parse_infer_meta(api_item_yaml[
                    'infer_meta'])
46 47
            self.kernel = self.parse_kernel(api_item_yaml['kernel'])
            self.support_selected_rows_kernel = False if len(self.kernel[
48 49
                'func']) == 1 or not self.kernel['func'][1].endswith(
                    '_sr') else True
50
            self.data_transform = self.parse_data_transform(api_item_yaml)
51 52
            self.inplace_map, self.view_map = self.parse_inplace_and_view(
                api_item_yaml)
53 54 55 56

    def get_api_name(self, api_item_yaml):
        return api_item_yaml['api']

57 58 59
    def get_api_func_name(self):
        return self.api

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    def get_input_tensor_args(self, inplace_flag=False):
        input_args = []
        inplace_type_map = {
            "const Tensor&": "Tensor&",
            "const std::vector<Tensor>&": "std::vector<Tensor>&"
        }
        for name in self.inputs['names']:
            name = name.split('@')[0]
            if inplace_flag and name in self.inplace_map.values():
                input_args.append(inplace_type_map[self.inputs['input_info'][
                    name]] + ' ' + name)
            else:
                input_args.append(self.inputs['input_info'][name] + ' ' + name)
        return input_args

    def get_declare_args(self, inplace_flag=False):
        declare_args = self.get_input_tensor_args(inplace_flag)
        for name in self.attrs['names']:
            default_value = ''
            if self.attrs['attr_info'][name][1] is not None:
                default_value = ' = ' + self.attrs['attr_info'][name][1]
            declare_args.append(self.attrs['attr_info'][name][0] + ' ' + name +
                                default_value)
83

84 85 86 87 88 89 90 91
        return ", ".join(declare_args)

    def get_define_args(self, inplace_flag=False):
        define_args = self.get_input_tensor_args(inplace_flag)
        for name in self.attrs['names']:
            define_args.append(self.attrs['attr_info'][name][0] + ' ' + name)

        return ", ".join(define_args)
92

93
    def parse_args(self, api_name, api_item_yaml):
94 95 96 97 98
        optional_vars = []
        if 'optional' in api_item_yaml:
            optional_vars = [
                item.strip() for item in api_item_yaml['optional'].split(',')
            ]
99
        inputs, attrs = self.parse_input_and_attr(
100
            api_name, api_item_yaml['args'], optional_vars)
101
        output_type_list, output_names, out_size_expr = self.parse_output(
102 103 104 105
            api_name, api_item_yaml['output'])
        return inputs, attrs, {
            'names': output_names,
            'types': output_type_list,
106 107
            'out_size_expr': out_size_expr
        }, optional_vars
108

109
    def parse_input_and_attr(self, api_name, args_config, optional_vars=[]):
110 111 112 113 114 115 116
        inputs = {'names': [], 'input_info': {}}
        attrs = {'names': [], 'attr_info': {}}
        args_str = args_config.strip()
        assert args_str.startswith('(') and args_str.endswith(')'), \
            f"Args declaration should start with '(' and end with ')', please check the args of {api_name} in yaml."
        args_str = args_str[1:-1]
        args_list = args_str.split(',')
Z
zyfncg 已提交
117 118 119 120
        input_types_map = {
            'Tensor': 'const Tensor&',
            'Tensor[]': 'const std::vector<Tensor>&'
        }
121
        attr_types_map = {
122
            'IntArray': 'const IntArray&',
123
            'Scalar': 'const Scalar&',
124 125 126 127
            'Scalar(int)': 'const Scalar&',
            'Scalar(int64_t)': 'const Scalar&',
            'Scalar(float)': 'const Scalar&',
            'Scalar(dobule)': 'const Scalar&',
128
            'int': 'int',
129 130
            'int32_t': 'int32_t',
            'int64_t': 'int64_t',
131 132 133 134 135
            'long': 'long',
            'size_t': 'size_t',
            'float': 'float',
            'double': 'double',
            'bool': 'bool',
136
            'str': 'const std::string&',
137
            'Place': 'const Place&',
138 139
            'DataLayout': 'DataLayout',
            'DataType': 'DataType',
140 141
            'int64_t[]': 'const std::vector<int64_t>&',
            'int[]': 'const std::vector<int>&'
142 143
        }
        optional_types_trans = {
H
hong 已提交
144
            'Tensor': 'paddle::optional<const Tensor&>',
145 146
            'Tensor[]': 'const paddle::optional<std::vector<Tensor>>&',
            'int': 'paddle::optional<int>',
147 148
            'int32_t': 'paddle::optional<int32_t>',
            'int64_t': 'paddle::optional<int64_t>',
149 150 151
            'float': 'paddle::optional<float>',
            'double': 'paddle::optional<double>',
            'bool': 'paddle::optional<bool>',
152
            'Place': 'paddle::optional<const Place&>',
153
            'DataLayout': 'paddle::optional<DataLayout>',
154
            'DataType': 'paddle::optional<DataType>'
155 156
        }

157 158
        for item in args_list:
            item = item.strip()
Z
zyfncg 已提交
159
            type_and_name = item.split(' ')
160 161
            # match the input tensor
            has_input = False
Z
zyfncg 已提交
162 163 164
            for in_type_symbol, in_type in input_types_map.items():
                if type_and_name[0] == in_type_symbol:
                    input_name = type_and_name[1].strip()
165 166 167 168 169
                    assert len(input_name) > 0, \
                        f"The input tensor name should not be empty. Please check the args of {api_name} in yaml."
                    assert len(attrs['names']) == 0, \
                        f"The input Tensor should appear before attributes. please check the position of {api_name}:input({input_name}) in yaml"

170 171 172
                    if input_name in optional_vars:
                        in_type = optional_types_trans[in_type_symbol]

173 174 175 176 177 178 179 180
                    inputs['names'].append(input_name)
                    inputs['input_info'][input_name] = in_type
                    has_input = True
                    break
            if has_input:
                continue

            # match the attribute
Z
zyfncg 已提交
181 182 183
            for attr_type_symbol, attr_type in attr_types_map.items():
                if type_and_name[0] == attr_type_symbol:
                    attr_name = item[len(attr_type_symbol):].strip()
184 185 186 187 188 189 190 191
                    assert len(attr_name) > 0, \
                        f"The attribute name should not be empty. Please check the args of {api_name} in yaml."
                    default_value = None
                    if '=' in attr_name:
                        attr_infos = attr_name.split('=')
                        attr_name = attr_infos[0].strip()
                        default_value = attr_infos[1].strip()

192 193 194
                    if attr_name in optional_vars:
                        attr_type = optional_types_trans[attr_type_symbol]

195 196 197 198 199
                    default_value_str = "" if default_value is None else '=' + default_value
                    attrs['names'].append(attr_name)
                    attrs['attr_info'][attr_name] = (attr_type, default_value)
                    break

200
        return inputs, attrs
201 202 203

    def parse_output(self, api_name, output_config):
        def parse_output_item(output_item):
Z
zyfncg 已提交
204 205 206 207
            output_type_map = {
                'Tensor': 'Tensor',
                'Tensor[]': 'std::vector<Tensor>'
            }
208 209 210 211 212 213 214 215 216 217 218 219 220 221
            result = re.search(
                r"(?P<out_type>[a-zA-Z0-9_[\]]+)\s*(?P<name>\([a-zA-Z0-9_@]+\))?\s*(?P<expr>\{[^\}]+\})?",
                output_item)
            assert result is not None, f"{api_name} : the output config parse error."
            out_type = result.group('out_type')
            assert out_type in output_type_map, \
                f"{api_name} : Output type error: the output type only support Tensor and Tensor[], \
                  but now is {out_type}."

            out_name = 'out' if result.group('name') is None else result.group(
                'name')[1:-1]
            out_size_expr = None if result.group(
                'expr') is None else result.group('expr')[1:-1]
            return output_type_map[out_type], out_name, out_size_expr
222 223 224 225

        temp_list = output_config.split(',')

        if len(temp_list) == 1:
226
            out_type, out_name, size_expr = parse_output_item(temp_list[0])
227
            return [out_type], [out_name], [size_expr]
228 229 230
        else:
            out_type_list = []
            out_name_list = []
231
            out_size_expr_list = []
232
            for output_item in temp_list:
233
                out_type, out_name, size_expr = parse_output_item(output_item)
234 235
                out_type_list.append(out_type)
                out_name_list.append(out_name)
236
                out_size_expr_list.append(size_expr)
237

238
            return out_type_list, out_name_list, out_size_expr_list
239

240 241 242 243 244 245 246 247 248 249 250 251 252 253
    def parse_infer_meta(self, infer_meta_config):
        infer_meta = infer_meta_config
        if 'param' not in infer_meta_config:
            infer_meta['param'] = None

        return infer_meta

    def parse_kernel(self, kernel_config):
        # kernel :
        #    func : [], Kernel functions (example: scale, scale_sr)
        #    param : [], Input params of kernel
        #    backend : str, the names of param to choose the kernel backend, default is None
        #    layout : str, the names of param to choose the kernel layout, default is None
        #    data_type : str, the names of param to choose the kernel data_type, default is None
254
        #    dispatch : {}, the key is kernel_func, the value is type of inputs and outputs for kernel (example: {kernel_name : (['dense','sparse_coo']#input,['sparse_coo']#output)})
255 256 257 258 259
        kernel = {
            'func': [],
            'param': None,
            'backend': None,
            'layout': None,
Z
zyfncg 已提交
260
            'data_type': None,
261 262
            'use_gpudnn': 'false',
            'dispatch': {}
263 264 265 266 267 268 269 270 271
        }
        if 'backend' in kernel_config and len(kernel_config['backend']) > 0:
            kernel['backend'] = kernel_config['backend']
        if 'layout' in kernel_config and len(kernel_config['layout']) > 0:
            kernel['layout'] = kernel_config['layout']
        if 'data_type' in kernel_config and len(kernel_config['data_type']) > 0:
            kernel['data_type'] = kernel_config['data_type']
        if 'param' in kernel_config:
            kernel['param'] = kernel_config['param']
272 273 274 275
        if 'use_gpudnn' in kernel_config:
            kernel['use_gpudnn'] = kernel_config['use_gpudnn']
            if isinstance(kernel['use_gpudnn'], bool):
                kernel['use_gpudnn'] = str(kernel['use_gpudnn']).lower()
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
        kernel_funcs = re.compile(r'([a-zA-Z0-9_]+)\s*({[^}]+})?').findall(
            kernel_config['func'])

        def parse_kernel_in_out_type(in_out_str):
            if len(in_out_str) == 0:
                return None
            tmp_in_out_list = in_out_str[1:-1].split('->')
            inputs = [item.strip() for item in tmp_in_out_list[0].split(',')]
            outputs = [item.strip() for item in tmp_in_out_list[1].split(',')]
            return (inputs, outputs)

        for func_item in kernel_funcs:
            kernel['func'].append(func_item[0])
            kernel['dispatch'][func_item[0]] = parse_kernel_in_out_type(
                func_item[1])
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

        return kernel

    def parse_data_transform(self, api_item_yaml):
        data_transform = {'skip_transform': [], 'support_trans_dtype': []}
        if 'data_transform' in api_item_yaml:
            if 'skip_transform' in api_item_yaml['data_transform']:
                data_transform['skip_transform'] = api_item_yaml[
                    'data_transform']['skip_transform']
            if 'support_trans_dtype' in api_item_yaml['data_transform']:
                data_transform['support_trans_dtype'] = api_item_yaml[
                    'data_transform']['support_trans_dtype']

        return data_transform

306
    def parse_inplace_and_view(self, api_item_yaml):
307
        inplace_map, view_map = {}, {}
308 309 310 311 312 313 314 315
        for mode in ['inplace', 'view']:
            if mode in api_item_yaml:
                if mode == 'inplace':
                    inplace_map = {}
                else:
                    view_map = {}
                in_out_mapping_list = api_item_yaml[mode].split(',')
                for item in in_out_mapping_list:
Z
zyfncg 已提交
316
                    result = re.search(r"(?P<in>\w+)\s*->\s*(?P<out>\w+)", item)
317 318 319 320 321 322 323 324 325 326 327 328 329
                    in_val = result.group('in')
                    out_val = result.group('out')
                    assert in_val in self.inputs['names'], \
                        f"{self.api} : {mode} input error: the input var name('{in_val}') is not found in the input args of {self.api}."
                    assert out_val in self.outputs['names'], \
                        f"{self.api} : {mode} output error: the output var name('{out_val}') is not found in the output args of {self.api}."

                    if mode == 'inplace':
                        inplace_map[out_val] = in_val
                    else:
                        view_map[out_val] = in_val

        return inplace_map, view_map
330

331
    # Override by child class
332
    def get_return_type(self, inplace_flag=False):
333 334 335
        return None

    def gene_api_declaration(self):
336 337 338 339 340
        api_declaration = ""
        api_func_name = self.get_api_func_name()
        if api_func_name[-1] != '_':
            api_declaration = f"""
PADDLE_API {self.get_return_type()} {api_func_name}({self.get_declare_args()});
341 342
"""

343 344 345
        if self.is_base_api and len(self.inplace_map) > 0:
            if api_func_name[-1] != '_':
                api_func_name += '_'
346
            api_declaration = api_declaration + f"""
347
PADDLE_API {self.get_return_type(inplace_flag=True)} {api_func_name}({self.get_declare_args(inplace_flag=True)});
348 349 350 351
"""

        return api_declaration

352 353 354 355 356 357 358 359 360
    # Backward API Override this method
    def gene_kernel_backend_select(self):
        backend_select_code = ""
        if self.kernel['backend'] is not None:
            if '>' in self.kernel['backend']:
                vars_list = self.kernel['backend'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{self.api} api: The number of params to set backend with '>' only allows 2, but received {len(vars_list)}."
361
                assert (vars_list[0].strip() in self.attrs['names']) and (self.attrs['attr_info'][vars_list[0].strip()][0] == 'const Place&'), \
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
                    f"{self.api} api: When use '>' to set kernel backend, the first param should be a attribute with Place type."
                backend_select_code = f"""
  kernel_backend = ParseBackendWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                backend_args = [
                    ele.strip() for ele in self.kernel['backend'].split(',')
                ]
                backend_select_code = f"""
  kernel_backend = ParseBackend({", ".join(backend_args)});
"""

        return backend_select_code

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    def gene_kernel_select(self) -> str:
        api = self.api
        input_names = self.inputs['names']
        attrs = self.attrs
        kernel = self.kernel

        kernel_key_item_init = """
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
"""
        # Check the tensor options
        attr_backend_count = 0
        attr_layout_count = 0
        attr_data_type_count = 0
        for attr_name in attrs['names']:
393
            if attrs['attr_info'][attr_name][0] == 'const Place&':
394
                assert kernel['backend'] is not None, \
395
                    f"{api} api: When there is a parameter with 'Place' type in attributes, you must set backend of kernel manually."
396 397 398 399 400 401 402 403 404 405 406
                attr_backend_count = attr_backend_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataLayout':
                assert kernel['layout'] is not None, \
                    f"{api} api: When there is a parameter with 'DataLayout' type in attributes, you must set layout of kernel manually."
                attr_layout_count = attr_layout_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataType':
                assert kernel['data_type'] is not None, \
                    f"{api} api: When there is a parameter with 'DataType' type in attributes, you must set data_type of kernel manually."
                attr_data_type_count = attr_data_type_count + 1

        # preprocess kernel configures
407
        kernel_select_code = self.gene_kernel_backend_select()
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

        if kernel['layout'] is not None:
            if '>' in kernel['layout']:
                vars_list = kernel['layout'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set layout with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataLayout', \
                    f"{api} api: When use '>' to set kernel layout, the first param should be a attribute with DataLayout type."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayoutWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['layout'].split(',')
                assert len(
                    vars_list
                ) == 1, f"{api} api: The number of params to set layout must be 1, but received {len(vars_list)}."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayout({vars_list[0].strip()});
"""

        if kernel['data_type'] is not None:
            if '>' in kernel['data_type']:
                vars_list = kernel['data_type'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set data_type with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataType', \
                    f"{api} api: When use '>' to set kernel data_type, the first param should be a attribute with DataType type."
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataTypeWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['data_type'].split(',')
                assert len(
                    vars_list
446
                ) == 1, f"{api} api: The number of params to set data_type only allows 1, but received {len(vars_list)}."
447 448 449 450 451
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataType({vars_list[0].strip()});
"""

        if len(input_names) == 0:
452
            assert attr_backend_count > 0 and attr_data_type_count > 0, \
453
                f"{api} api: When there is no input tensor, the args must have 'Place' and 'DataType'."
454 455 456 457 458 459 460 461 462 463 464

        kernel_select_args = ""
        for input_name in input_names:
            kernel_select_args = kernel_select_args + input_name + ", "

        if len(kernel_select_args) > 2:
            kernel_select_args = kernel_select_args[:-2]

        kernel_select_code = kernel_key_item_init + kernel_select_code

        if len(input_names) > 0:
465 466
            if self.support_selected_rows_kernel:
                kernel_select_code = kernel_select_code + f"""
467
  KernelType kernel_type = ParseKernelTypeByInputArgs({", ".join(input_names)});
468 469
"""

470 471 472 473 474
            kernel_select_code = kernel_select_code + f"""
  if (kernel_backend == Backend::UNDEFINED
        || kernel_layout == DataLayout::UNDEFINED
        || kernel_data_type == DataType::UNDEFINED ) {{
    auto kernel_key_set = ParseKernelKeyByInputArgs({kernel_select_args});
475
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
476 477 478 479 480 481 482 483 484 485 486 487 488
    if (kernel_backend == Backend::UNDEFINED) {{
      kernel_backend = kernel_key.backend();
    }}
    if (kernel_layout == DataLayout::UNDEFINED) {{
      kernel_layout = kernel_key.layout();
    }}
    if (kernel_data_type == DataType::UNDEFINED) {{
      kernel_data_type = kernel_key.dtype();
    }}
  }}"""

        return kernel_select_code

489
    def gene_infer_meta(self, kernel_output_names, code_indent) -> str:
490 491 492 493
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        infer_meta = self.infer_meta

494 495
        infer_meta_params = infer_meta['param'] if infer_meta[
            'param'] is not None else input_names + attr_names
496 497 498 499 500
        # generate meta tensors
        meta_tensor_code = ""
        param_code = ""
        for param in infer_meta_params:
            if param in input_names:
501 502 503 504 505
                if self.inputs['input_info'][param] == "const Tensor&":
                    param_code = param_code + "MakeMetaTensor(*" + PREFIX_TENSOR_NAME + param + "), "
                elif self.inputs['input_info'][
                        param] == "const std::vector<Tensor>&":
                    meta_tensor_code = meta_tensor_code + f"""
506
{code_indent}  auto {param}_meta_vec = MakeMetaTensor({PREFIX_TENSOR_NAME}{param});
507
{code_indent}  std::vector<const phi::MetaTensor*> {param}_metas({param}_meta_vec.size());
508 509 510 511 512 513 514
{code_indent}  for (size_t i = 0; i < {param}_meta_vec.size(); ++i) {{
{code_indent}    {param}_metas[i] = &{param}_meta_vec[i];
{code_indent}  }}
"""

                    param_code = param_code + param + "_metas, "
                elif param in self.optional_vars:
515
                    meta_tensor_code = meta_tensor_code + f"""
H
hong 已提交
516
{code_indent}  paddle::optional<const phi::MetaTensor&> {PREFIX_TENSOR_NAME}meta_ref_{param} = paddle::none;
517 518
{code_indent}  phi::DenseTensor {param}_dt;
{code_indent}  phi::MetaTensor {PREFIX_TENSOR_NAME}meta_tmp_{param}({param}_dt);
H
hong 已提交
519 520 521 522 523 524
{code_indent}  if ({PREFIX_TENSOR_NAME}{param}_ptr) {{
{code_indent}    {PREFIX_TENSOR_NAME}meta_tmp_{param}.set_dtype( {PREFIX_TENSOR_NAME}{param}_ptr->dtype() );
{code_indent}    {PREFIX_TENSOR_NAME}meta_tmp_{param}.set_dims( {PREFIX_TENSOR_NAME}{param}_ptr->dims() );
{code_indent}    {PREFIX_TENSOR_NAME}meta_tmp_{param}.set_layout( {PREFIX_TENSOR_NAME}{param}_ptr->layout() );
{code_indent}    {PREFIX_TENSOR_NAME}meta_ref_{param} =  {PREFIX_TENSOR_NAME}meta_tmp_{param};
{code_indent}  }}\n"""
525 526 527

                    param_code = param_code + f"{PREFIX_TENSOR_NAME}meta_ref_{param}, "
                else:
528 529 530
                    raise ValueError(
                        f"{self.api} : Param of infer_meta error : {self.inputs['input_info'][param]} type is not supported."
                    )
531 532 533 534 535 536 537 538 539
            elif param in attr_names:
                param_code = param_code + param + ", "
            elif isinstance(param, str):
                param_code = param_code + "\"" + param + "\", "
            elif isinstance(param, bool):
                param_code = param_code + str(param).lower() + ", "
            else:
                param_code = param_code + str(param) + ", "

540 541 542 543 544 545
        for i, out_name in enumerate(kernel_output_names):
            if self.outputs['types'][i] == 'std::vector<Tensor>':
                meta_tensor_code = meta_tensor_code + f"""
{code_indent}  auto {out_name}_{PREFIX_META_TENSOR_NAME}vec = MakeMetaTensor({out_name});
{code_indent}  std::vector<phi::MetaTensor*> {out_name}_metas({out_name}_{PREFIX_META_TENSOR_NAME}vec.size());
{code_indent}  for (size_t i = 0; i < {out_name}_{PREFIX_META_TENSOR_NAME}vec.size(); ++i) {{
546
{code_indent}    {out_name}_metas[i] = {out_name}[i] ? &{out_name}_{PREFIX_META_TENSOR_NAME}vec[i] : nullptr;
547 548 549 550 551 552 553
{code_indent}  }}"""

                param_code = param_code + out_name + '_metas, '
            else:
                meta_tensor_code = meta_tensor_code + code_indent + "  phi::MetaTensor " + out_name.replace(
                    'kernel_',
                    PREFIX_META_TENSOR_NAME) + "(" + out_name + ");\n"
554 555 556 557
                if len(kernel_output_names) == 1:
                    param_code = param_code + f"&{out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)}, "
                else:
                    param_code = param_code + f"{out_name} ? &{out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)} : nullptr, "
558

559 560
        param_code = param_code[:-2]
        return f"""{meta_tensor_code}
561
{code_indent}  phi::{infer_meta['func']}({param_code});
562 563
"""

564
    def get_kernel_args(self, code_indent):
565
        input_trans_map = {
566
            'const Tensor&': 'const phi::DenseTensor&',
567
            'const std::vector<Tensor>&':
568
            'const std::vector<const phi::DenseTensor*>&',
H
hong 已提交
569 570 571
            'const paddle::optional<Tensor&>':
            'paddle::optional<const phi::DenseTensor&>',
            'paddle::optional<const Tensor&>':
572 573 574
            'paddle::optional<const phi::DenseTensor&>',
            'const paddle::optional<std::vector<Tensor>>&':
            'paddle::optional<const std::vector<phi::DenseTensor>&>'
575 576
        }
        out_trans_map = {
577 578
            'Tensor': 'phi::DenseTensor*',
            'std::vector<Tensor>': 'std::vector<phi::DenseTensor*>&'
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
        }
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']
        kernel_args_type_list = ['const platform::DeviceContext&']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_tensor_code = ""
        for i, input_name in enumerate(input_names):
            # set input code
            if input_name in kernel_param:
                trans_flag = "{}"
                if input_name in self.data_transform['skip_transform']:
                    trans_flag = "{true}"
                elif input_name in self.data_transform['support_trans_dtype']:
                    trans_flag = "{false, true}"
598 599 600 601 602 603 604 605 606
                if input_name in self.optional_vars:
                    input_tensor_code = input_tensor_code + f"""
{code_indent}  {input_trans_map[input_infos[input_name]]} {PREFIX_TENSOR_NAME}{input_name}(paddle::none);
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_ptr = PrepareData({input_name}, kernel.InputAt({i}), {trans_flag});
{code_indent}  if ({PREFIX_TENSOR_NAME}{input_name}_ptr) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name} = paddle::make_optional<const phi::DenseTensor&>(*{PREFIX_TENSOR_NAME}{input_name}_ptr);
{code_indent}  }}"""

                else:
607 608
                    if self.inputs['input_info'][input_name] == "const Tensor&":
                        input_tensor_code = input_tensor_code + f"""
609
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = PrepareData({input_name}, kernel.InputAt({i}), {trans_flag});"""
610

611 612 613 614 615 616 617 618 619 620 621 622
                    elif self.inputs['input_info'][
                            input_name] == "const std::vector<Tensor>&":
                        input_tensor_code = input_tensor_code + f"""
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_vec = PrepareData({input_name}, kernel.InputAt({i}), {trans_flag});
{code_indent}  std::vector<const phi::DenseTensor*> {PREFIX_TENSOR_NAME}{input_name}({PREFIX_TENSOR_NAME}{input_name}_vec->size());
{code_indent}  for (size_t i = 0; i < {PREFIX_TENSOR_NAME}{input_name}.size(); ++i) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name}[i] = &{PREFIX_TENSOR_NAME}{input_name}_vec->at(i);
{code_indent}  }}"""

                    else:
                        # do nothing
                        pass
623
            else:
624 625 626 627 628 629 630 631 632 633
                if input_name in self.optional_vars:
                    input_tensor_code = input_tensor_code + f"""
{code_indent}  {input_trans_map[input_infos[input_name]]} {PREFIX_TENSOR_NAME}{input_name}(paddle::none);
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_ptr = TensorToDenseTensor({input_name});
{code_indent}  if ({PREFIX_TENSOR_NAME}{input_name}_ptr) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name} = paddle::make_optional<const phi::DenseTensor&>(*{PREFIX_TENSOR_NAME}{input_name}_ptr);
{code_indent}  }}"""

                else:
                    input_tensor_code = input_tensor_code + f"""
634 635 636 637 638
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = TensorToDenseTensor({input_name});"""

        kernel_args = "*dev_ctx, "
        for param in kernel_param:
            if param in input_names:
639 640 641
                if param in self.optional_vars:
                    kernel_args = kernel_args + PREFIX_TENSOR_NAME + param + ", "
                else:
642 643 644
                    if self.inputs['input_info'][param] == "const Tensor&":
                        kernel_args = kernel_args + "*" + PREFIX_TENSOR_NAME + param + ", "
                    elif self.inputs['input_info'][
645
                            param] == "const std::vector<Tensor>&":
646 647 648 649
                        kernel_args = kernel_args + PREFIX_TENSOR_NAME + param + ", "
                    else:
                        # do nothing
                        pass
650 651
                kernel_in_type = input_trans_map[input_infos[param]]
                kernel_args_type_list.append(kernel_in_type)
652 653
            elif param in attr_names:
                # set attr for kernel_context
654 655 656
                if 'IntArray' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const phi::IntArray&')
                    param = 'phi::IntArray(' + param + ')'
657
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
658 659
                    kernel_args_type_list.append('const phi::Scalar&')
                    param = 'phi::Scalar(' + param + ')'
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
                else:
                    kernel_args_type_list.append(self.attrs['attr_info'][param][
                        0])
                kernel_args = kernel_args + param + ", "
            elif isinstance(param, bool):
                kernel_args = kernel_args + str(param).lower() + ", "
            else:
                kernel_args = kernel_args + str(param) + ", "

        for out_type in self.outputs['types']:
            kernel_args_type_list.append(out_trans_map[out_type])

        kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")"

        return input_tensor_code, kernel_args[:-2], kernel_signature

    def get_selected_rows_kernel_args(self, code_indent):
        input_trans_map = {
678
            'const Tensor&': 'const phi::SelectedRows&',
679 680
            'const paddle::optional<Tensor>&':
            'paddle::optional<const phi::SelectedRows&>'
681
        }
682
        out_trans_map = {'Tensor': 'phi::SelectedRows*'}
683 684 685 686 687 688 689 690 691 692 693 694
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']
        kernel_args_type_list = ['const platform::DeviceContext&']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_tensor_code = ""
        for i, input_name in enumerate(input_names):
            # set input code
695 696 697 698 699 700 701 702 703 704 705
            if input_name in self.optional_vars:
                input_tensor_code = input_tensor_code + f"""

{code_indent}  {input_trans_map[input_infos[input_name]]} {PREFIX_TENSOR_NAME}{input_name}(paddle::none);
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_ptr = TensorToSelectedRows({input_name});
{code_indent}  if ({PREFIX_TENSOR_NAME}{input_name}_ptr) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name} = paddle::make_optional<const phi::SelectedRows&>(*{PREFIX_TENSOR_NAME}{input_name}_ptr);
{code_indent}  }}"""

            else:
                input_tensor_code = input_tensor_code + f"""
706
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = TensorToSelectedRows({input_name});"""
707 708 709 710

        kernel_args = "*dev_ctx, "
        for param in kernel_param:
            if param in input_names:
711 712 713 714 715 716
                if param in self.optional_vars:
                    kernel_args = kernel_args + PREFIX_TENSOR_NAME + param + ", "
                else:
                    kernel_args = kernel_args + "*" + PREFIX_TENSOR_NAME + param + ", "
                kernel_in_type = input_trans_map[input_infos[param]]
                kernel_args_type_list.append(kernel_in_type)
717 718
            elif param in attr_names:
                # set attr for kernel_context
719 720 721
                if 'IntArray' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const phi::IntArray&')
                    param = 'phi::IntArray(' + param + ')'
722
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
723 724
                    kernel_args_type_list.append('const phi::Scalar&')
                    param = 'phi::Scalar(' + param + ')'
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
                else:
                    kernel_args_type_list.append(self.attrs['attr_info'][param][
                        0])
                kernel_args = kernel_args + param + ", "
            elif isinstance(param, bool):
                kernel_args = kernel_args + str(param).lower() + ", "
            else:
                kernel_args = kernel_args + str(param) + ", "

        for out_type in self.outputs['types']:
            kernel_args_type_list.append(out_trans_map[out_type])

        kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")"

        return input_tensor_code, kernel_args[:-2], kernel_signature

741 742
    # Override by child class
    def gene_return_code(self):
743
        return "return api_output;"
744

745
    # Override by child class
746 747 748 749 750
    def gene_output(self,
                    output_type_list,
                    set_out_func,
                    code_indent,
                    inplace_flag=False):
751 752
        return None, None, None

753
    def gen_dense_tensor_kernel_code(self, code_indent, inplace_flag=False):
754 755 756
        input_tensors, kernel_args, kernel_signature = self.get_kernel_args(
            code_indent)
        outputs_args, kernel_output_names, output_create = self.gene_output(
757
            self.outputs['types'], 'SetKernelOutput', code_indent, inplace_flag)
758
        api_func_name = self.get_api_func_name() + ('_' if inplace_flag else '')
Z
zyfncg 已提交
759
        cudnn_args = '' if self.kernel[
760
            'use_gpudnn'] == 'false' else ', ' + self.kernel['use_gpudnn']
761
        return f"""
F
From00 已提交
762
{code_indent}  VLOG(6) << "{self.api} API kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
763
{code_indent}  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
Z
zyfncg 已提交
764
{code_indent}      "{self.kernel['func'][0]}", {{kernel_backend, kernel_layout, kernel_data_type}}{cudnn_args});
765 766 767 768 769 770 771 772 773
{code_indent}  VLOG(6) << "{self.api} API kernel: " << kernel;

{code_indent}  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);
{input_tensors}
{output_create}
{self.gene_infer_meta(kernel_output_names, code_indent)}

{code_indent}  using kernel_signature = {kernel_signature};
{code_indent}  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
774
{code_indent}  {{
C
chenjian 已提交
775
{code_indent}    paddle::platform::RecordEvent kernel_record_event(\"{api_func_name} compute\", paddle::platform::TracerEventType::OperatorInner, 1);
776 777
{code_indent}    (*kernel_fn)({kernel_args}, {outputs_args});
{code_indent}  }}
778

779
{code_indent}  {self.gene_return_code()}"""
780

781
    def gen_selected_rows_kernel_code(self, code_indent, inplace_flag=False):
782 783 784
        input_tensors, kernel_args, kernel_signature = self.get_selected_rows_kernel_args(
            code_indent)
        outputs_args, kernel_output_names, output_create = self.gene_output(
785 786
            self.outputs['types'], 'SetSelectedRowsKernelOutput', code_indent,
            inplace_flag)
787
        api_func_name = self.get_api_func_name() + ('_' if inplace_flag else '')
788
        return f"""
789
{code_indent}  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
790 791 792 793 794 795 796 797 798 799 800
{code_indent}      "{self.kernel['func'][1]}", {{kernel_backend, kernel_layout, kernel_data_type}});
{code_indent}  VLOG(6) << "{self.api} API SelectedRows kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
{code_indent}  VLOG(6) << "{self.api} API SelectedRows kernel: " << kernel;

{code_indent}  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);
{input_tensors}
{output_create}
{self.gene_infer_meta(kernel_output_names, code_indent)}

{code_indent}  using kernel_signature = {kernel_signature};
{code_indent}  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
801
{code_indent}  {{
C
chenjian 已提交
802
{code_indent}    paddle::platform::RecordEvent kernel_record_event(\"{api_func_name} compute\", paddle::platform::TracerEventType::OperatorInner, 1);
803 804
{code_indent}    (*kernel_fn)({kernel_args}, {outputs_args});
{code_indent}  }}
805

806
{code_indent}  {self.gene_return_code()}"""
807

808
    def gene_base_api_code(self, inplace_flag=False):
809 810 811
        api_func_name = self.get_api_func_name()
        if inplace_flag and api_func_name[-1] != '_':
            api_func_name += '_'
812
        api_code = f"""
813
PADDLE_API {self.get_return_type(inplace_flag)} {api_func_name}({self.get_define_args(inplace_flag)}) {{
814
{self.gene_kernel_select()}
815
"""
816

817 818 819
        if self.support_selected_rows_kernel:
            code_indent = '  '
            return api_code + f"""
820
  if(kernel_type == KernelType::DENSE_TENSOR_KENREL){{
821
{self.gen_dense_tensor_kernel_code(code_indent, inplace_flag)}
822
  }} else {{
823
{self.gen_selected_rows_kernel_code(code_indent, inplace_flag)}
824
  }}
825
}}
826 827
"""

828 829 830 831
        else:
            code_indent = ''
            return api_code + self.gen_dense_tensor_kernel_code(
                code_indent, inplace_flag) + """
832
}
833 834
"""

835 836
    def gene_invoke_code(self, invoke_code, params_code):
        return f"""
837
PADDLE_API {self.get_return_type()} {self.api}({params_code}) {{
838 839 840
  return {invoke_code};
}}"""

841 842 843
    def gene_api_code(self):
        if self.is_base_api:
            api_code = self.gene_base_api_code()
844
            if len(self.inplace_map) > 0:
Z
zyfncg 已提交
845 846
                if self.api[-1] == '_':
                    api_code = ""
847 848 849
                api_code = api_code + self.gene_base_api_code(inplace_flag=True)
            return api_code

850
        else:
851 852
            invoke_func_name = self.invoke.split('(')[0].strip()
            if invoke_func_name in self.attrs['names']:
853
                # Adjust the param whose name is same with api invoked.
854
                pattern = r'\W' + invoke_func_name + '[^A-Za-z0-9_(]'
855 856 857 858 859 860 861

                def adjust_name(matched):
                    matched_str = matched.group()
                    return matched_str[0:-1] + '_val' + matched_str[-1]

                invoke_code = re.sub(pattern, adjust_name, self.invoke)
                params_code = re.sub(pattern, adjust_name,
862
                                     self.get_define_args())
863 864
            else:
                invoke_code = self.invoke
865 866
                params_code = self.get_define_args()
            return self.gene_invoke_code(invoke_code, params_code)