gan_trainer_image.py 11.4 KB
Newer Older
W
wangyang59 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import random
import numpy
W
wangyang59 已提交
18
import cPickle
19
import sys,os
W
wangyang59 已提交
20 21 22 23 24
from PIL import Image

from paddle.trainer.config_parser import parse_config
from paddle.trainer.config_parser import logger
import py_paddle.swig_paddle as api
25 26 27 28 29 30 31 32 33 34 35 36 37 38
import matplotlib.pyplot as plt

def plot2DScatter(data, outputfile):
    x = data[:, 0]
    y = data[:, 1]
    print "The mean vector is %s" % numpy.mean(data, 0)
    print "The std vector is %s" % numpy.std(data, 0)

    heatmap, xedges, yedges = numpy.histogram2d(x, y, bins=50)
    extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]

    plt.clf()
    plt.scatter(x, y)
    plt.savefig(outputfile, bbox_inches='tight')
W
wangyang59 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

def CHECK_EQ(a, b):
    assert a == b, "a=%s, b=%s" % (a, b)


def copy_shared_parameters(src, dst):
    src_params = [src.getParameter(i)
               for i in xrange(src.getParameterSize())]
    src_params = dict([(p.getName(), p) for p in src_params])


    for i in xrange(dst.getParameterSize()):
        dst_param = dst.getParameter(i)
        src_param = src_params.get(dst_param.getName(), None)
        if src_param is None:
            continue
        src_value = src_param.getBuf(api.PARAMETER_VALUE)
        dst_value = dst_param.getBuf(api.PARAMETER_VALUE)
        CHECK_EQ(len(src_value), len(dst_value))
        dst_value.copyFrom(src_value)
        dst_param.setValueUpdated()
        
def print_parameters(src):
    src_params = [src.getParameter(i)
               for i in xrange(src.getParameterSize())]

    print "***************"
    for p in src_params:
        print "Name is %s" % p.getName()
        print "value is %s \n" % p.getBuf(api.PARAMETER_VALUE).copyToNumpyArray()

def load_mnist_data(imageFile):
    f = open(imageFile, "rb")
    f.read(16)

    # Define number of samples for train/test
    if "train" in imageFile:
        n = 60000
    else:
        n = 10000
    
    data = numpy.zeros((n, 28*28), dtype = "float32")
    
    for i in range(n):
        pixels = []
        for j in range(28 * 28):
W
wangyang59 已提交
85
            pixels.append(float(ord(f.read(1))) / 255.0 * 2.0 - 1.0)
W
wangyang59 已提交
86 87 88 89 90
        data[i, :] = pixels

    f.close()
    return data

W
wangyang59 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103
def load_cifar_data(cifar_path):
    batch_size = 10000
    data = numpy.zeros((5*batch_size, 32*32*3), dtype = "float32")
    for i in range(1, 6):
        file = cifar_path + "/data_batch_" + str(i)
        fo = open(file, 'rb')
        dict = cPickle.load(fo)
        fo.close()
        data[(i - 1)*batch_size:(i*batch_size), :] = dict["data"]
    
    data = data / 255.0 * 2.0 - 1.0
    return data

104 105 106 107 108
# synthesize 2-D uniform data
def load_uniform_data():
    data = numpy.random.rand(1000000, 2).astype('float32')
    return data

109
def merge(images, size):
W
wangyang59 已提交
110 111 112 113 114
    if images.shape[1] == 28*28:
        h, w, c = 28, 28, 1
    else:
        h, w, c = 32, 32, 3
    img = numpy.zeros((h * size[0], w * size[1], c))
115 116 117
    for idx in xrange(size[0] * size[1]):
        i = idx % size[1]
        j = idx // size[1]
W
wangyang59 已提交
118 119 120
        img[j*h:j*h+h, i*w:i*w+w, :] = \
          ((images[idx, :].reshape((h, w, c), order="F").transpose(1, 0, 2) + 1.0) / 2.0 * 255.0)
    return img.astype('uint8')
121

W
wangyang59 已提交
122
def saveImages(images, path):
123
    merged_img = merge(images, [8, 8])
W
wangyang59 已提交
124 125 126 127
    if merged_img.shape[2] == 1:
        im = Image.fromarray(numpy.squeeze(merged_img)).convert('RGB')
    else:
        im = Image.fromarray(merged_img, mode="RGB")
128
    im.save(path)
W
wangyang59 已提交
129 130 131 132 133 134 135 136 137
    
def get_real_samples(batch_size, data_np):
    return data_np[numpy.random.choice(data_np.shape[0], batch_size, 
                                       replace=False),:]
    
def get_noise(batch_size, noise_dim):
    return numpy.random.normal(size=(batch_size, noise_dim)).astype('float32')

def get_fake_samples(generator_machine, batch_size, noise):
W
wangyang59 已提交
138
    gen_inputs = api.Arguments.createArguments(1)
139
    gen_inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise))
W
wangyang59 已提交
140 141 142 143 144 145 146 147 148 149 150
    gen_outputs = api.Arguments.createArguments(0)
    generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST)
    fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat()
    return fake_samples

def get_training_loss(training_machine, inputs):
    outputs = api.Arguments.createArguments(0)
    training_machine.forward(inputs, outputs, api.PASS_TEST)
    loss = outputs.getSlotValue(0).copyToNumpyMat()
    return numpy.mean(loss)

151
def prepare_discriminator_data_batch_pos(batch_size, data_np):
W
wangyang59 已提交
152 153
    real_samples = get_real_samples(batch_size, data_np)
    labels = numpy.ones(batch_size, dtype='int32')
154 155 156
    inputs = api.Arguments.createArguments(2)
    inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(real_samples))
    inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(labels))
W
wangyang59 已提交
157 158
    return inputs

159
def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise):
W
wangyang59 已提交
160 161
    fake_samples = get_fake_samples(generator_machine, batch_size, noise)
    labels = numpy.zeros(batch_size, dtype='int32')
162 163 164
    inputs = api.Arguments.createArguments(2)
    inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(fake_samples))
    inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(labels))
W
wangyang59 已提交
165 166
    return inputs

167
def prepare_generator_data_batch(batch_size, noise):
W
wangyang59 已提交
168
    label = numpy.ones(batch_size, dtype='int32')
169 170 171
    inputs = api.Arguments.createArguments(2)
    inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise))
    inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(label))
W
wangyang59 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    return inputs


def find(iterable, cond):
    for item in iterable:
        if cond(item):
            return item
    return None


def get_layer_size(model_conf, layer_name):
    layer_conf = find(model_conf.layers, lambda x: x.name == layer_name)
    assert layer_conf is not None, "Cannot find '%s' layer" % layer_name
    return layer_conf.size


def main():
W
wangyang59 已提交
189
    parser = argparse.ArgumentParser()
190
    parser.add_argument("-d", "--dataSource", help="mnist or cifar or uniform")
W
wangyang59 已提交
191 192
    parser.add_argument("--useGpu", default="1", 
                        help="1 means use gpu for training")
W
wangyang59 已提交
193 194
    parser.add_argument("--gpuId", default="0", 
                        help="the gpu_id parameter")
W
wangyang59 已提交
195 196 197
    args = parser.parse_args()
    dataSource = args.dataSource
    useGpu = args.useGpu
198
    assert dataSource in ["mnist", "cifar", "uniform"]
W
wangyang59 已提交
199 200
    assert useGpu in ["0", "1"]
            
W
wangyang59 已提交
201 202
    api.initPaddle('--use_gpu=' + useGpu, '--dot_period=10', '--log_period=100', 
                   '--gpu_id=' + args.gpuId)
203 204 205 206 207 208 209 210 211 212 213
    
    if dataSource == "uniform":
        conf = "gan_conf.py"
        num_iter = 10000
    else:
        conf = "gan_conf_image.py"
        num_iter = 1000
        
    gen_conf = parse_config(conf, "mode=generator_training,data=" + dataSource)
    dis_conf = parse_config(conf, "mode=discriminator_training,data=" + dataSource)
    generator_conf = parse_config(conf, "mode=generator,data=" + dataSource)
W
wangyang59 已提交
214 215 216
    batch_size = dis_conf.opt_config.batch_size
    noise_dim = get_layer_size(gen_conf.model_config, "noise")
    
W
wangyang59 已提交
217
    if dataSource == "mnist":
218 219
        data_np = load_mnist_data("./data/mnist_data/train-images-idx3-ubyte")
    elif dataSource == "cifar":
W
wangyang59 已提交
220
        data_np = load_cifar_data("./data/cifar-10-batches-py/")
221 222
    else:
        data_np = load_uniform_data()
W
wangyang59 已提交
223 224 225
    
    if not os.path.exists("./%s_samples/" % dataSource):
        os.makedirs("./%s_samples/" % dataSource)
226
    
W
wangyang59 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    # this create a gradient machine for discriminator
    dis_training_machine = api.GradientMachine.createFromConfigProto(
        dis_conf.model_config)

    gen_training_machine = api.GradientMachine.createFromConfigProto(
        gen_conf.model_config)

    # generator_machine is used to generate data only, which is used for
    # training discrinator
    logger.info(str(generator_conf.model_config))
    generator_machine = api.GradientMachine.createFromConfigProto(
        generator_conf.model_config)
    
    dis_trainer = api.Trainer.create(
        dis_conf, dis_training_machine)

    gen_trainer = api.Trainer.create(
        gen_conf, gen_training_machine)
    
    dis_trainer.startTrain()
    gen_trainer.startTrain()
    
    copy_shared_parameters(gen_training_machine, dis_training_machine)
    copy_shared_parameters(gen_training_machine, generator_machine)
    
252 253
    # constrain that either discriminator or generator can not be trained
    # consecutively more than MAX_strike times
W
wangyang59 已提交
254 255
    curr_train = "dis"
    curr_strike = 0
256
    MAX_strike = 5
W
wangyang59 已提交
257 258 259 260
     
    for train_pass in xrange(100):
        dis_trainer.startTrainPass()
        gen_trainer.startTrainPass()
261
        for i in xrange(num_iter):
W
wangyang59 已提交
262 263
            noise = get_noise(batch_size, noise_dim)
            data_batch_dis_pos = prepare_discriminator_data_batch_pos(
264
                batch_size, data_np)
W
wangyang59 已提交
265
            dis_loss_pos = get_training_loss(dis_training_machine, data_batch_dis_pos)
W
wangyang59 已提交
266
            
W
wangyang59 已提交
267
            data_batch_dis_neg = prepare_discriminator_data_batch_neg(
268
                generator_machine, batch_size, noise)
W
wangyang59 已提交
269 270 271 272 273
            dis_loss_neg = get_training_loss(dis_training_machine, data_batch_dis_neg)            
                         
            dis_loss = (dis_loss_pos + dis_loss_neg) / 2.0
             
            data_batch_gen = prepare_generator_data_batch(
274
                    batch_size, noise)
W
wangyang59 已提交
275 276 277 278 279 280
            gen_loss = get_training_loss(gen_training_machine, data_batch_gen)
             
            if i % 100 == 0:
                print "d_pos_loss is %s     d_neg_loss is %s" % (dis_loss_pos, dis_loss_neg) 
                print "d_loss is %s    g_loss is %s" % (dis_loss, gen_loss)
                             
281 282
            if (not (curr_train == "dis" and curr_strike == MAX_strike)) and \
               ((curr_train == "gen" and curr_strike == MAX_strike) or dis_loss > gen_loss):
W
wangyang59 已提交
283 284 285 286 287 288
                if curr_train == "dis":
                    curr_strike += 1
                else:
                    curr_train = "dis"
                    curr_strike = 1                
                dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_neg)
289
                dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_pos)               
W
wangyang59 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
                copy_shared_parameters(dis_training_machine, gen_training_machine)
 
            else:
                if curr_train == "gen":
                    curr_strike += 1
                else:
                    curr_train = "gen"
                    curr_strike = 1
                gen_trainer.trainOneDataBatch(batch_size, data_batch_gen)    
                copy_shared_parameters(gen_training_machine, dis_training_machine)
                copy_shared_parameters(gen_training_machine, generator_machine)
 
        dis_trainer.finishTrainPass()
        gen_trainer.finishTrainPass()
        fake_samples = get_fake_samples(generator_machine, batch_size, noise)
305 306 307 308
        if dataSource == "uniform":
            plot2DScatter(fake_samples, "./%s_samples/train_pass%s.png" % (dataSource, train_pass))
        else:
            saveImages(fake_samples, "./%s_samples/train_pass%s.png" % (dataSource, train_pass))
W
wangyang59 已提交
309 310 311 312 313
    dis_trainer.finishTrain()
    gen_trainer.finishTrain()

if __name__ == '__main__':
    main()