dense_host_tensor.cc 3.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/infrt/tensor/dense_host_tensor.h"

#include <llvm/Support/raw_os_ostream.h>

#include "paddle/infrt/common/buffer.h"

namespace infrt::tensor {

23 24 25 26
DenseHostTensor::DenseHostTensor(std::initializer_list<int64_t>&& list,
                                 DType dtype)
    : DenseHostTensor(TensorShape(list), dtype) {}

Y
Yan Chunwei 已提交
27 28 29 30 31 32 33 34
DenseHostTensor::DenseHostTensor(const TensorShape& shape, DType dtype)
    : HostTensor(TensorMetadata{dtype, shape}) {
  CHECK(metadata().IsValid()) << "Tensor construct get invalid metadata";
  buffer_.reset(new infrt::Buffer(infrt::common::DefaultHostTarget()));
  buffer_->ResizeLazy(dtype.GetHostSize() * shape.GetNumElements());
}

const TensorShape& DenseHostTensor::shape() const { return metadata().shape; }
35 36 37
TensorShape* DenseHostTensor::mutable_shape() {
  return &mutable_metadata()->shape;
}
Y
Yan Chunwei 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

void DenseHostTensor::Init(const std::vector<int64_t>& shape, DType dtype) {
  auto shape_array = llvm::ArrayRef<int64_t>(shape.data(), shape.size());
  auto metadata = TensorMetadata(dtype, shape_array);
  setTensorMetadata(metadata);
  buffer_.reset(new infrt::Buffer(infrt::common::DefaultHostTarget()));
  buffer_->ResizeLazy(dtype.GetHostSize() * metadata.shape.GetNumElements());
}

const infrt::Buffer* DenseHostTensor::buffer() const { return buffer_.get(); }

template <typename T>
void DisplayArray(std::ostream& os, T* data, int num_elements) {
  for (int i = 0; i < num_elements - 1; i++) os << data[i] << ", ";
  if (num_elements > 0) os << data[num_elements - 1];
}

std::ostream& operator<<(std::ostream& os, const DenseHostTensor& instance) {
  CHECK(instance.metadata().IsValid())
      << "Cann't print tensor with invalid metadata";
  llvm::raw_os_ostream oos(os);
  oos << "tensor: ";
  oos << "shape=";
  oos << instance.shape();
  oos << ", values=[";

  oos.flush();

  if (instance.metadata().dtype == GetDType<float>()) {
    auto* data = reinterpret_cast<float*>(instance.buffer()->data()->memory);
    DisplayArray(os, data, instance.shape().GetNumElements());
  } else if (instance.metadata().dtype == GetDType<double>()) {
    auto* data = reinterpret_cast<double*>(instance.buffer()->data()->memory);
    DisplayArray(os, data, instance.shape().GetNumElements());
  } else if (instance.metadata().dtype == GetDType<int32_t>()) {
    auto* data = reinterpret_cast<int32_t*>(instance.buffer()->data()->memory);
    DisplayArray(os, data, instance.shape().GetNumElements());
  } else if (instance.metadata().dtype == GetDType<int64_t>()) {
    auto* data = reinterpret_cast<int64_t*>(instance.buffer()->data()->memory);
    DisplayArray(os, data, instance.shape().GetNumElements());
  } else {
    LOG(FATAL) << "Not supported dtype [" << instance.metadata().dtype.name()
               << " " << static_cast<int>(instance.metadata().dtype.kind())
               << "] in print";
  }

  os << "]";

  return os;
}

DenseHostTensor::~DenseHostTensor() {}

void* DenseHostTensor::raw_data() const { return buffer_->data()->memory; }

93 94
DType DenseHostTensor::dtype() const { return metadata().dtype; }

Y
Yan Chunwei 已提交
95
}  // namespace infrt::tensor