Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
93a2f565
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
93a2f565
编写于
3月 28, 2022
作者:
石
石晓伟
提交者:
GitHub
3月 28, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
predictor supports phi, test=develop (#40856)
上级
ca871957
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
283 addition
and
58 deletion
+283
-58
paddle/infrt/api/.gitignore
paddle/infrt/api/.gitignore
+1
-0
paddle/infrt/api/CMakeLists.txt
paddle/infrt/api/CMakeLists.txt
+2
-1
paddle/infrt/api/infrt_api.cc
paddle/infrt/api/infrt_api.cc
+73
-27
paddle/infrt/api/infrt_api.h
paddle/infrt/api/infrt_api.h
+7
-7
paddle/infrt/api/infrt_api_test.cc.in
paddle/infrt/api/infrt_api_test.cc.in
+60
-0
paddle/infrt/backends/host/phi_context.h
paddle/infrt/backends/host/phi_context.h
+12
-12
paddle/infrt/dialect/phi/pass/phi_op_convert_pass.cc
paddle/infrt/dialect/phi/pass/phi_op_convert_pass.cc
+2
-0
paddle/infrt/kernel/phi/dense_tensor_kernels.cc
paddle/infrt/kernel/phi/dense_tensor_kernels.cc
+17
-10
paddle/infrt/kernel/phi/dense_tensor_kernels.h
paddle/infrt/kernel/phi/dense_tensor_kernels.h
+6
-1
paddle/infrt/tensor/dense_host_tensor.cc
paddle/infrt/tensor/dense_host_tensor.cc
+2
-0
paddle/infrt/tensor/dense_host_tensor.h
paddle/infrt/tensor/dense_host_tensor.h
+2
-0
paddle/infrt/tests/timer.h
paddle/infrt/tests/timer.h
+99
-0
未找到文件。
paddle/infrt/api/.gitignore
0 → 100644
浏览文件 @
93a2f565
infrt_api_test.cc
paddle/infrt/api/CMakeLists.txt
浏览文件 @
93a2f565
...
...
@@ -3,6 +3,7 @@ core_gather_headers()
gather_srcs
(
infrt_src SRCS
infrt_api.cc
)
configure_file
(
${
CMAKE_CURRENT_SOURCE_DIR
}
/infrt_api_test.cc.in
${
CMAKE_CURRENT_SOURCE_DIR
}
/infrt_api_test.cc
)
# Disable temporarily for the external-kernel's mkldnn is outdate
# cc_test
(test_infrt_api SRCS infrt_api_test.cc DEPS infrt ${MLIR_IR_LIBS})
cc_test_tiny
(
test_infrt_api SRCS infrt_api_test.cc DEPS infrt
${
MLIR_IR_LIBS
}
)
paddle/infrt/api/infrt_api.cc
浏览文件 @
93a2f565
...
...
@@ -22,18 +22,27 @@
#include <unordered_map>
#include <vector>
#include "mlir/Pass/PassManager.h"
#include "paddle/infrt/backends/host/phi_allocator.h"
#include "paddle/infrt/common/global.h"
#include "paddle/infrt/dialect/dense_tensor.h"
#include "paddle/infrt/dialect/infrt/ir/infrt_dialect.h"
#include "paddle/infrt/dialect/infrt/pass/infrt_op_fuse_pass.h"
#include "paddle/infrt/dialect/mlir_loader.h"
#include "paddle/infrt/dialect/phi/ir/phi_base.h"
#include "paddle/infrt/dialect/phi/pass/phi_op_convert_pass.h"
#include "paddle/infrt/host_context/core_runtime.h"
#include "paddle/infrt/host_context/kernel_registry.h"
#include "paddle/infrt/host_context/mlir_function_executable.h"
#include "paddle/infrt/host_context/mlir_to_runtime_translate.h"
#include "paddle/infrt/host_context/op_executable.h"
#include "paddle/infrt/host_context/paddle_mlir.h"
#include "paddle/infrt/host_context/value.h"
#include "paddle/infrt/kernel/basic_kernels.h"
#include "paddle/infrt/kernel/control_flow_kernels.h"
#include "paddle/infrt/kernel/phi/dense_tensor_kernels.h"
#include "paddle/infrt/kernel/phi/infershaped/infershaped_kernel_launchers.h"
#include "paddle/infrt/kernel/phi/registry.h"
#include "paddle/infrt/kernel/tensor_kernels.h"
#include "paddle/infrt/kernel/tensor_shape_kernels.h"
#include "paddle/infrt/kernel/test_kernels.h"
...
...
@@ -84,12 +93,12 @@ class PredictExecutor : public MlirToRuntimeTranslator {
PredictExecutor
(
mlir
::
ModuleOp
module
,
KernelRegistry
*
registry
,
TensorMap
*
map
)
::
infrt
::
phi
::
DenseTensorMap
&&
map
)
:
MlirToRuntimeTranslator
(
module
,
&
core_runtime
),
core_runtime
(
registry
),
registry_
(
registry
)
{
CHECK
(
registry_
);
Init
(
map
);
Init
(
std
::
move
(
map
)
);
}
void
Run
()
{
...
...
@@ -100,18 +109,18 @@ class PredictExecutor : public MlirToRuntimeTranslator {
int
GetInputNum
()
{
return
inputs_
.
size
();
}
DenseHost
Tensor
*
GetInput
(
int
i
)
{
return
inputs_
[
i
];
}
::
phi
::
Dense
Tensor
*
GetInput
(
int
i
)
{
return
inputs_
[
i
];
}
int
GetOutputNum
()
{
return
outputs_
.
size
();
}
DenseHost
Tensor
*
GetOutput
(
int
i
)
{
return
outputs_
[
i
];
}
::
phi
::
Dense
Tensor
*
GetOutput
(
int
i
)
{
return
outputs_
[
i
];
}
private:
void
Init
(
TensorMap
*
map
)
{
void
Init
(
::
infrt
::
phi
::
DenseTensorMap
&&
map
)
{
EmitFunctions
();
llvm
::
Optional
<
mlir
::
FuncOp
>
predict_func_
=
llvm
::
None
;
for
(
auto
func_op
:
impl_
->
module
.
getOps
<
mlir
::
FuncOp
>
())
{
if
(
func_op
.
getName
().
str
()
!=
"
predict
"
)
continue
;
if
(
func_op
.
getName
().
str
()
!=
"
main_graph
"
)
continue
;
predict_func_
=
func_op
;
break
;
}
...
...
@@ -125,20 +134,24 @@ class PredictExecutor : public MlirToRuntimeTranslator {
new
MlirFunctionExecutable
(
predict_func
,
registry_
,
impl_
->
func_defs
);
// process parammeters
VLOG
(
3
)
<<
"Arguments num of predict func: "
<<
predict_func
.
getNumArguments
();
for
(
size_t
i
=
0
;
i
<
predict_func
.
getNumArguments
();
++
i
)
{
auto
arg
=
predict_func
.
getArgument
(
i
);
auto
type
=
arg
.
getType
();
// this param is TensorMap
if
(
type
.
isa
<
infrt
::
DenseHost
TensorMapType
>
())
{
auto
*
value
=
new
host_context
::
Value
(
std
::
move
(
*
map
));
if
(
type
.
isa
<
::
infrt
::
phi
::
Dense
TensorMapType
>
())
{
auto
*
value
=
new
host_context
::
Value
(
std
::
move
(
map
));
arguments_
.
push_back
(
value
);
AddValue
(
predict_func
.
getArgument
(
i
),
value
);
}
else
{
}
else
if
(
type
.
isa
<::
infrt
::
DenseTensorType
>
())
{
// this param is an input Tensor
auto
dht
=
DenseHost
Tensor
();
auto
dht
=
::
phi
::
Dense
Tensor
();
auto
*
value
=
new
host_context
::
Value
(
std
::
move
(
dht
));
arguments_
.
push_back
(
value
);
inputs_
.
push_back
(
&
(
value
->
get
<
DenseHostTensor
>
()));
inputs_
.
push_back
(
&
(
value
->
get
<::
phi
::
DenseTensor
>
()));
}
else
{
llvm_unreachable
(
"The input type has not been supported by predictor."
);
}
}
...
...
@@ -146,9 +159,18 @@ class PredictExecutor : public MlirToRuntimeTranslator {
auto
&
last_op
=
predict_func
.
front
().
back
();
if
(
last_op
.
getName
().
getStringRef
()
==
"infrt.return"
)
{
for
(
size_t
i
=
0
;
i
<
last_op
.
getNumOperands
();
++
i
)
{
auto
*
value
=
AddValue
(
mlir
::
Value
(
last_op
.
getOperand
(
i
)));
results_
.
push_back
(
ValueRef
(
value
));
outputs_
.
push_back
(
&
(
value
->
get
<
DenseHostTensor
>
()));
auto
operand
=
last_op
.
getOperand
(
i
);
if
(
operand
.
getType
().
isa
<::
infrt
::
DenseTensorType
>
())
{
auto
r
=
impl_
->
value_map
.
try_emplace
(
operand
,
ValueRef
(
new
host_context
::
Value
(
::
phi
::
DenseTensor
())));
CHECK
(
r
.
second
)
<<
"Duplicate add mlir value ["
<<
DumpToString
(
operand
)
<<
"]"
;
auto
*
value
=
r
.
first
->
second
.
get
();
results_
.
push_back
(
ValueRef
(
value
));
outputs_
.
push_back
(
&
(
value
->
get
<::
phi
::
DenseTensor
>
()));
}
else
{
llvm_unreachable
(
"infrt.return only supports DenseTensor now."
);
}
}
}
}
...
...
@@ -166,22 +188,22 @@ class PredictExecutor : public MlirToRuntimeTranslator {
private:
KernelRegistry
*
registry_
{};
MlirFunctionExecutable
*
function_executable_
;
llvm
::
SmallVector
<
DenseHost
Tensor
*
,
1
>
inputs_
;
llvm
::
SmallVector
<
::
phi
::
Dense
Tensor
*
,
1
>
inputs_
;
llvm
::
SmallVector
<
host_context
::
Value
*
,
2
>
arguments_
;
llvm
::
SmallVector
<
DenseHost
Tensor
*
,
1
>
outputs_
;
llvm
::
SmallVector
<
::
phi
::
Dense
Tensor
*
,
1
>
outputs_
;
llvm
::
SmallVector
<
ValueRef
,
1
>
results_
;
};
std
::
shared
_ptr
<
InfRtPredictor
>
CreateInfRtPredictor
(
std
::
unique
_ptr
<
InfRtPredictor
>
CreateInfRtPredictor
(
const
InfRtConfig
&
config
)
{
auto
x
=
std
::
make_
shared
<
InfRtPredictor
>
();
auto
x
=
std
::
make_
unique
<
InfRtPredictor
>
();
x
->
Init
(
config
);
return
x
;
}
struct
InfRtPredictor
::
Impl
{
mlir
::
OwningModuleRef
module_ref
;
std
::
unique_ptr
<
PredictExecutor
>
executor
;
MLIRModelGenImpl
module_gen_
;
};
InfRtPredictor
::
InfRtPredictor
()
:
impl_
(
new
Impl
)
{}
...
...
@@ -190,8 +212,7 @@ InfRtPredictor::~InfRtPredictor() {}
void
InfRtPredictor
::
Run
()
{
impl_
->
executor
->
Run
();
}
int
InfRtPredictor
::
Init
(
const
InfRtConfig
&
config
)
{
mlir
::
MLIRContext
*
context
=
infrt
::
Global
::
getMLIRContext
();
auto
module_ref
=
dialect
::
LoadMlirFile
(
config
.
mlir_path
(),
context
);
mlir
::
MLIRContext
*
context
=
::
infrt
::
Global
::
getMLIRContext
();
KernelRegistry
*
registry
=
new
KernelRegistry
();
...
...
@@ -200,8 +221,32 @@ int InfRtPredictor::Init(const InfRtConfig& config) {
kernel
::
RegisterTensorShapeKernels
(
registry
);
kernel
::
RegisterTensorKernels
(
registry
);
kernel
::
RegisterControlFlowKernels
(
registry
);
impl_
->
module_ref
=
std
::
move
(
module_ref
);
#ifdef INFRT_WITH_PHI
kernel
::
RegisterPhiKernels
(
registry
);
kernel
::
RegisterInferShapeLaunchers
(
registry
);
#if defined(INFRT_WITH_GPU) && defined(INFRT_WITH_TRT)
kernel
::
RegisterTrtKernels
(
registry
);
#endif // INFRT_WITH_GPU && INFRT_WITH_TRT
#endif
auto
module_op
=
impl_
->
module_gen_
.
ImportPaddleModel
(
config
.
model_dir
(),
config
.
param_dir
());
context
->
loadAllAvailableDialects
();
::
mlir
::
PassManager
pm
(
context
);
::
mlir
::
OpPassManager
&
phi_pass_manager
=
pm
.
nest
<::
mlir
::
FuncOp
>
();
std
::
vector
<::
infrt
::
Place
>
valid_places
=
{{
::
infrt
::
TargetType
::
CPU
,
::
infrt
::
PrecisionType
::
FLOAT32
,
::
infrt
::
LayoutType
::
NCHW
}};
phi_pass_manager
.
addPass
(
::
infrt
::
createPhiOpCvtPass
(
valid_places
));
phi_pass_manager
.
addPass
(
::
infrt
::
createInfrtOpFusePass
());
if
(
mlir
::
failed
(
pm
.
run
(
module_op
)))
{
std
::
cout
<<
"
\n
pass failed!
\n
"
<<
std
::
endl
;
return
4
;
}
#ifndef NDEBUG
module_op
.
dump
();
#endif // NDEBUG
// load extra shared library
for
(
const
std
::
string
&
lib_path
:
config
.
shared_libs
())
{
...
...
@@ -222,23 +267,24 @@ int InfRtPredictor::Init(const InfRtConfig& config) {
}
// Load params
TensorMap
*
tensor_map
=
LoadParams
(
config
.
model_dir
());
auto
tensor_map
=
::
infrt
::
kernel
::
phi
::
LoadCombinedParameters
(
config
.
model_dir
(),
config
.
param_dir
());
// Create PredictExecutor
impl_
->
executor
.
reset
(
new
PredictExecutor
(
impl_
->
module_ref
.
get
(),
registry
,
tensor_map
));
new
PredictExecutor
(
module_op
,
registry
,
std
::
move
(
tensor_map
)
));
return
0
;
}
int
InfRtPredictor
::
GetInputNum
()
{
return
impl_
->
executor
->
GetInputNum
();
}
DenseHost
Tensor
*
InfRtPredictor
::
GetInput
(
int
i
)
{
::
phi
::
Dense
Tensor
*
InfRtPredictor
::
GetInput
(
int
i
)
{
return
impl_
->
executor
->
GetInput
(
i
);
}
int
InfRtPredictor
::
GetOutputNum
()
{
return
impl_
->
executor
->
GetOutputNum
();
}
DenseHost
Tensor
*
InfRtPredictor
::
GetOutput
(
int
i
)
{
::
phi
::
Dense
Tensor
*
InfRtPredictor
::
GetOutput
(
int
i
)
{
return
impl_
->
executor
->
GetOutput
(
i
);
}
...
...
paddle/infrt/api/infrt_api.h
浏览文件 @
93a2f565
...
...
@@ -17,13 +17,13 @@
#include <string>
#include <vector>
#include "paddle/
infrt/tensor/dense_host
_tensor.h"
#include "paddle/
phi/core/dense
_tensor.h"
namespace
infrt
{
class
InfRtConfig
{
std
::
string
model_dir_
;
std
::
string
mlir_path
_
;
std
::
string
param_dir
_
;
std
::
vector
<
std
::
string
>
shared_libs_
;
public:
...
...
@@ -31,8 +31,8 @@ class InfRtConfig {
void
set_model_dir
(
const
std
::
string
&
model_dir
)
{
model_dir_
=
model_dir
;
}
const
std
::
string
&
model_dir
()
const
{
return
model_dir_
;
}
void
set_
mlir_path
(
const
std
::
string
&
mlir_path
)
{
mlir_path_
=
mlir_path
;
}
const
std
::
string
&
mlir_path
()
const
{
return
mlir_path
_
;
}
void
set_
param_dir
(
const
std
::
string
&
param_dir
)
{
param_dir_
=
param_dir
;
}
const
std
::
string
&
param_dir
()
const
{
return
param_dir
_
;
}
void
set_shared_libs
(
const
std
::
vector
<
std
::
string
>&
shared_libs
)
{
shared_libs_
=
shared_libs
;
...
...
@@ -49,15 +49,15 @@ class InfRtPredictor {
void
Run
();
int
Init
(
const
InfRtConfig
&
config
);
int
GetInputNum
();
tensor
::
DenseHost
Tensor
*
GetInput
(
int
i
);
::
phi
::
Dense
Tensor
*
GetInput
(
int
i
);
int
GetOutputNum
();
tensor
::
DenseHost
Tensor
*
GetOutput
(
int
i
);
::
phi
::
Dense
Tensor
*
GetOutput
(
int
i
);
protected:
struct
Impl
;
std
::
unique_ptr
<
Impl
>
impl_
;
};
std
::
shared
_ptr
<
InfRtPredictor
>
CreateInfRtPredictor
(
const
InfRtConfig
&
config
);
std
::
unique
_ptr
<
InfRtPredictor
>
CreateInfRtPredictor
(
const
InfRtConfig
&
config
);
}
// namespace infrt
paddle/infrt/api/infrt_api_test.cc
→
paddle/infrt/api/infrt_api_test.cc
.in
浏览文件 @
93a2f565
...
...
@@ -12,14 +12,14 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/infrt/api/infrt_api.h"
#include <gtest/gtest.h>
#include <iostream>
#include <vector>
#include "llvm/Support/raw_ostream.h"
#include "paddle/infrt/api/infrt_api.h"
#include "paddle/infrt/backends/host/phi_allocator.h"
#include "paddle/infrt/common/buffer.h"
#include "paddle/infrt/common/dtype.h"
...
...
@@ -31,49 +31,30 @@ namespace infrt {
TEST(InfRtPredictor, predictor) {
std::vector<std::string> shared_libs;
shared_libs
.
push_back
(
"../../paddle/libexternal_kernels.so"
);
InfRtConfig config;
// set external shared libraries that contain kernels.
config
.
set_shared_libs
(
shared_libs
);
// set model dir
config
.
set_model_dir
(
"../../paddle/paddle_1.8_fc_model"
);
// set mlir path
config
.
set_mlir_path
(
"../../../infrt/dialect/mlir_tests/tensor_map.mlir"
);
std
::
shared_ptr
<
InfRtPredictor
>
predictor
=
CreateInfRtPredictor
(
config
);
config.set_model_dir("@CMAKE_BINARY_DIR@/linear/linear.pdmodel");
config.set_param_dir("@CMAKE_BINARY_DIR@/linear/linear.pdiparams");
auto
*
input
=
predictor
->
GetInput
(
0
);
std
::
vector
<
int64_t
>
shape
=
{
3
,
3
};
input
->
Init
(
shape
,
infrt
::
GetDType
<
float
>
());
llvm
::
outs
()
<<
input
->
shape
()
<<
"
\n
"
;
std::unique_ptr<InfRtPredictor> predictor = CreateInfRtPredictor(config);
// init input tensor
auto
*
input_data
=
reinterpret_cast
<
float
*>
(
input
->
buffer
()
->
data
()
->
memory
);
for
(
int
i
=
0
;
i
<
input
->
shape
().
GetNumElements
();
i
++
)
input_data
[
i
]
=
1.0
;
::infrt::backends::CpuPhiAllocator cpu_allocator;
::phi::DenseTensor* input = predictor->GetInput(0);
input->Resize({16, 784});
input->AllocateFrom(&cpu_allocator, ::phi::DataType::FLOAT32);
auto* input_data = reinterpret_cast<float*>(input->data());
for (int i = 0; i < input->numel(); i++) input_data[i] = 1.0;
predictor->Run();
// get and print output tensor
auto* output = predictor->GetOutput(0);
auto
*
output_data
=
reinterpret_cast
<
float
*>
(
output
->
buffer
()
->
data
()
->
memory
);
std
::
vector
<
float
>
ans
=
{
0.428458
,
0.244493
,
0.572342
,
0.572008
,
0.509771
,
0.495599
,
0.651287
,
0.326426
,
0.404649
};
// TODO(Shixiaowei02): Automatic result validation for training then inference.
// auto* output_data = reinterpret_cast<float*>(output->data());
ASSERT_EQ
(
output
->
shape
().
GetNumElements
(),
ans
.
size
());
for
(
int
i
=
0
;
i
<
output
->
shape
().
GetNumElements
();
++
i
)
{
ASSERT_NEAR
(
output_data
[
i
],
ans
[
i
],
0.000001
);
}
ASSERT_EQ(output->dims(), ::phi::DDim({16, 10}));
}
} // namespace infrt
paddle/infrt/backends/host/phi_context.h
浏览文件 @
93a2f565
...
...
@@ -18,10 +18,10 @@ limitations under the License. */
namespace
infrt
{
namespace
backends
{
class
CpuPhiContext
:
public
phi
::
CPUContext
{
class
CpuPhiContext
:
public
::
phi
::
CPUContext
{
public:
using
Base
=
phi
::
CPUContext
;
using
phi
::
CPUContext
::
SetEigenDevice
;
using
Base
=
::
phi
::
CPUContext
;
using
::
phi
::
CPUContext
::
SetEigenDevice
;
CpuPhiContext
()
{
Init
();
...
...
@@ -29,18 +29,18 @@ class CpuPhiContext : public phi::CPUContext {
}
private:
std
::
unique_ptr
<
phi
::
Allocator
>
alloc_
{
std
::
make_unique
<
CpuPhiAllocator
>
()};
std
::
unique_ptr
<
::
phi
::
Allocator
>
alloc_
{
std
::
make_unique
<
CpuPhiAllocator
>
()};
};
class
GpuPhiContext
:
public
phi
::
GPUContext
{
class
GpuPhiContext
:
public
::
phi
::
GPUContext
{
public:
using
Base
=
phi
::
GPUContext
;
using
phi
::
GPUContext
::
SetStream
;
using
phi
::
GPUContext
::
SetEigenDevice
;
using
phi
::
GPUContext
::
SetBlasHandle
;
using
phi
::
GPUContext
::
SetDnnHandle
;
using
phi
::
GPUContext
::
SetSolverHandle
;
using
phi
::
GPUContext
::
SetSparseHandle
;
using
Base
=
::
phi
::
GPUContext
;
using
::
phi
::
GPUContext
::
SetStream
;
using
::
phi
::
GPUContext
::
SetEigenDevice
;
using
::
phi
::
GPUContext
::
SetBlasHandle
;
using
::
phi
::
GPUContext
::
SetDnnHandle
;
using
::
phi
::
GPUContext
::
SetSolverHandle
;
using
::
phi
::
GPUContext
::
SetSparseHandle
;
};
}
// namespace backends
...
...
paddle/infrt/dialect/phi/pass/phi_op_convert_pass.cc
浏览文件 @
93a2f565
...
...
@@ -110,6 +110,8 @@ void PhiOpConvertPass::convertStage() {
::
phi
::
KernelSignature
kernel_sign
=
::
phi
::
OpUtilsMap
::
Instance
().
GetArgumentMappingFn
(
op_name
)(
infrt
::
ProtoArgumentMappingContext
(
op
));
VLOG
(
3
)
<<
"IncompatiblePhiKernel: op("
<<
op_name
<<
"), kernel("
<<
kernel_sign
.
name
<<
")"
;
// resort input&output according to kernel_sign
::
llvm
::
SmallVector
<
mlir
::
Value
,
4
>
inputs
,
ori_output
;
::
llvm
::
SmallVector
<
mlir
::
Type
,
4
>
output_types
;
...
...
paddle/infrt/kernel/phi/dense_tensor_kernels.cc
浏览文件 @
93a2f565
...
...
@@ -19,6 +19,7 @@
#include "paddle/infrt/kernel/phi/context_kernels.h"
#include "paddle/infrt/paddle/model_parser.h"
#include "paddle/infrt/paddle/scope.h"
#include "paddle/infrt/tensor/tensor_map.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/common/place.h"
...
...
@@ -167,9 +168,7 @@ void PrintDenseTensor(::phi::DenseTensor* dense_tensor) {
#undef PRINT_META_DATA
}
::
infrt
::
phi
::
DenseTensorMap
LoadParams
(
host_context
::
Attribute
<
std
::
string
>
path
)
{
const
auto
&
file_path
=
path
.
get
();
::
infrt
::
phi
::
DenseTensorMap
LoadParameters
(
const
std
::
string
&
file_path
)
{
std
::
cout
<<
"loading params from: "
<<
file_path
<<
std
::
endl
;
::
infrt
::
phi
::
DenseTensorMap
map
;
...
...
@@ -201,17 +200,19 @@ void PrintDenseTensor(::phi::DenseTensor* dense_tensor) {
return
map
;
}
::
infrt
::
phi
::
DenseTensorMap
LoadCombinedParams
(
host_context
::
Attribute
<
std
::
string
>
model_path
,
host_context
::
Attribute
<
std
::
string
>
params_path
)
{
const
auto
&
model
=
model_path
.
get
();
std
::
cout
<<
"loading params from: "
<<
model
<<
std
::
endl
;
::
infrt
::
phi
::
DenseTensorMap
LoadParams
(
host_context
::
Attribute
<
std
::
string
>
path
)
{
return
LoadParameters
(
path
.
get
());
}
::
infrt
::
phi
::
DenseTensorMap
LoadCombinedParameters
(
const
std
::
string
&
model_path
,
const
std
::
string
&
params_path
)
{
::
infrt
::
phi
::
DenseTensorMap
map
;
auto
pb_proto_prog
=
paddle
::
LoadProgram
(
model
);
auto
pb_proto_prog
=
paddle
::
LoadProgram
(
model
_path
);
auto
main_block
=
pb_proto_prog
->
blocks
(
0
);
std
::
ifstream
param_file
(
params_path
.
get
()
,
std
::
ios
::
binary
);
std
::
ifstream
param_file
(
params_path
,
std
::
ios
::
binary
);
std
::
set
<
std
::
string
>
tmp
;
for
(
auto
&
var
:
main_block
.
vars
())
{
...
...
@@ -237,6 +238,12 @@ void PrintDenseTensor(::phi::DenseTensor* dense_tensor) {
return
map
;
}
::
infrt
::
phi
::
DenseTensorMap
LoadCombinedParams
(
host_context
::
Attribute
<
std
::
string
>
model_path
,
host_context
::
Attribute
<
std
::
string
>
params_path
)
{
return
LoadCombinedParameters
(
model_path
.
get
(),
params_path
.
get
());
}
::
phi
::
DenseTensor
TensorMapGetTensor
(
const
::
infrt
::
phi
::
DenseTensorMap
&
map
,
host_context
::
Attribute
<
std
::
string
>
name
)
{
...
...
paddle/infrt/kernel/phi/dense_tensor_kernels.h
浏览文件 @
93a2f565
...
...
@@ -50,7 +50,9 @@ void FillDenseTensorF32(::phi::DenseTensor* dense_tensor,
host_context
::
Attribute
<
std
::
vector
<
float
>>
values
);
void
PrintDenseTensor
(
::
phi
::
DenseTensor
*
dense_tensor
);
infrt
::
phi
::
DenseTensorMap
LoadParams
(
::
infrt
::
phi
::
DenseTensorMap
LoadParameters
(
const
std
::
string
&
path
);
::
infrt
::
phi
::
DenseTensorMap
LoadParams
(
host_context
::
Attribute
<
std
::
string
>
path
);
::
phi
::
DenseTensor
TensorMapGetTensor
(
...
...
@@ -61,6 +63,9 @@ infrt::phi::DenseTensorMap LoadParams(
host_context
::
Attribute
<
std
::
string
>
model_path
,
host_context
::
Attribute
<
std
::
string
>
params_path
);
::
infrt
::
phi
::
DenseTensorMap
LoadCombinedParameters
(
const
std
::
string
&
model_path
,
const
std
::
string
&
params_path
);
int32_t
TensorMapGetSize
(
const
::
infrt
::
phi
::
DenseTensorMap
&
map
);
#ifdef INFRT_WITH_GPU
...
...
paddle/infrt/tensor/dense_host_tensor.cc
浏览文件 @
93a2f565
...
...
@@ -90,4 +90,6 @@ DenseHostTensor::~DenseHostTensor() {}
void
*
DenseHostTensor
::
raw_data
()
const
{
return
buffer_
->
data
()
->
memory
;
}
DType
DenseHostTensor
::
dtype
()
const
{
return
metadata
().
dtype
;
}
}
// namespace infrt::tensor
paddle/infrt/tensor/dense_host_tensor.h
浏览文件 @
93a2f565
...
...
@@ -78,6 +78,8 @@ class DenseHostTensor : public HostTensor {
const
TensorShape
&
shape
()
const
;
TensorShape
*
mutable_shape
();
DType
dtype
()
const
;
const
Buffer
*
buffer
()
const
;
void
*
raw_data
()
const
;
...
...
paddle/infrt/tests/timer.h
0 → 100644
浏览文件 @
93a2f565
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <chrono>
namespace
infrt
{
namespace
tests
{
template
<
typename
ClockT
>
class
ChronoTimer
{
public:
using
TimePoint
=
std
::
chrono
::
time_point
<
ClockT
>
;
ChronoTimer
()
:
start_
{
TimePoint
::
min
()}
{}
void
Clear
()
{
start_
=
TimePoint
::
min
();
}
void
Start
()
{
start_
=
ClockT
::
now
();
}
double
GetMs
()
{
auto
diff
=
ClockT
::
now
()
-
start_
;
return
static_cast
<
double
>
(
std
::
chrono
::
duration_cast
<
std
::
chrono
::
duration
<
double
>>
(
diff
)
.
count
())
*
1000.0
;
}
private:
TimePoint
start_
;
};
using
WallClockTimer
=
ChronoTimer
<
std
::
chrono
::
steady_clock
>
;
class
CpuClockTimer
{
public:
CpuClockTimer
()
=
default
;
void
Clear
()
{
start_
=
0
;
}
void
Start
()
{
start_
=
std
::
clock
();
}
double
GetMs
()
{
std
::
clock_t
diff
=
std
::
clock
()
-
start_
;
return
static_cast
<
double
>
(
diff
*
1000.0
/
CLOCKS_PER_SEC
);
}
private:
std
::
clock_t
start_
{
0
};
};
class
BenchmarkStats
{
public:
void
Start
()
{
wall_timer_
.
Start
();
cpu_timer_
.
Start
();
}
void
Stop
()
{
wall_time_
.
push_back
(
wall_timer_
.
GetMs
());
cpu_time_
.
push_back
(
cpu_timer_
.
GetMs
());
}
std
::
string
Summerize
(
const
std
::
vector
<
float
>&
percents
)
{
std
::
stringstream
ss
;
std
::
sort
(
wall_time_
.
begin
(),
wall_time_
.
end
());
std
::
sort
(
cpu_time_
.
begin
(),
cpu_time_
.
end
());
auto
percentile
=
[](
float
p
,
const
std
::
vector
<
float
>&
stats
)
{
assert
(
p
>=
0
&&
p
<
1
);
return
stats
[
stats
.
size
()
*
p
];
};
for
(
auto
p
:
percents
)
{
ss
<<
"=== Wall Time (ms):
\n
"
;
ss
<<
" * percent "
<<
std
::
to_string
(
static_cast
<
int
>
(
p
*
100
));
ss
<<
": "
<<
percentile
(
p
,
wall_time_
)
<<
'\n'
;
}
for
(
auto
p
:
percents
)
{
ss
<<
"=== CPU Time (ms):
\n
"
;
ss
<<
" * percent "
<<
std
::
to_string
(
static_cast
<
int
>
(
p
*
100
));
ss
<<
": "
<<
percentile
(
p
,
cpu_time_
)
<<
'\n'
;
}
return
ss
.
str
();
}
private:
WallClockTimer
wall_timer_
;
std
::
vector
<
float
>
wall_time_
;
CpuClockTimer
cpu_timer_
;
std
::
vector
<
float
>
cpu_time_
;
};
}
// namespace tests
}
// namespace infrt
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录