NeonDepthwiseConv.cpp 4.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
H
hedaoyuan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "NeonDepthwiseConv.h"
H
hedaoyuan 已提交
16 17 18 19 20 21 22 23
#include "paddle/function/ConvOp.h"

namespace paddle {

#if defined(__ARM_NEON__) || defined(__ARM_NEON)

template <DeviceType Device>
class NeonDepthwiseConvFunction : public ConvFunctionBase {
W
Wu Yi 已提交
24
 public:
H
hedaoyuan 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();
    checkShape(input, filter, output);
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
    check(inputs, outputs);

    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();

H
hedaoyuan 已提交
45 46 47 48 49 50 51 52 53 54
    int batchSize = input[0];
    int inputChannels = input[1];
    int inputHeight = input[2];
    int inputWidth = input[3];
    int filterHeight = getFilterHeight(filter);
    int filterWidth = getFilterWidth(filter);
    int outputChannels = output[1];
    int outputHeight = output[2];
    int outputWidth = output[3];
    int filterMultiplier = outputChannels / groups_;
55
    CHECK_EQ(static_cast<size_t>(inputChannels), groups_);
H
hedaoyuan 已提交
56

H
hedaoyuan 已提交
57
    // only support strideH() == strideW() and filterHeight == filterWidth.
H
hedaoyuan 已提交
58 59 60 61 62 63 64 65 66
    CHECK_EQ(strideH(), strideW());
    CHECK_EQ(filterHeight, filterWidth);

    float* inputData = inputs[0].data<float>();
    float* filterData = inputs[1].data<float>();
    float* outputData = outputs[0].data<float>();

    // padding the input
    float* inputPadding = inputData;
67 68
    int padInputHeight = inputHeight + 2 * paddingH();
    int padInputWidth = inputWidth + 2 * paddingW();
H
hedaoyuan 已提交
69
    if (paddingH() > 0 || paddingW() > 0) {
70
      int newSize = batchSize * inputChannels * padInputHeight * padInputWidth;
H
hedaoyuan 已提交
71 72
      resizeBuffer<Device>(newSize);
      inputPadding = reinterpret_cast<float*>(memory_->getBuf());
73 74 75 76 77
      neon::Padding<float>::run(inputData,
                                inputPadding,
                                batchSize * inputChannels,
                                inputHeight,
                                inputWidth,
78 79
                                padInputHeight,
                                padInputWidth);
H
hedaoyuan 已提交
80 81
    }

H
hedaoyuan 已提交
82 83 84 85 86
    std::function<void(
        const float*, const float*, int, int, int, int, int, int, float*)>
        DepthWiseConv;

    if (filterWidth == 3 && strideW() == 1) {
H
hedaoyuan 已提交
87
      DepthWiseConv = neon::DepthwiseConvKernel<3, 1>::run;
H
hedaoyuan 已提交
88
    } else if (filterWidth == 3 && strideW() == 2) {
H
hedaoyuan 已提交
89
      DepthWiseConv = neon::DepthwiseConvKernel<3, 2>::run;
H
hedaoyuan 已提交
90
    } else if (filterWidth == 4 && strideW() == 1) {
H
hedaoyuan 已提交
91
      DepthWiseConv = neon::DepthwiseConvKernel<4, 1>::run;
H
hedaoyuan 已提交
92
    } else if (filterWidth == 4 && strideW() == 2) {
H
hedaoyuan 已提交
93
      DepthWiseConv = neon::DepthwiseConvKernel<4, 2>::run;
H
hedaoyuan 已提交
94 95 96
    } else {
      LOG(FATAL) << "Not supported";
    }
H
hedaoyuan 已提交
97

H
hedaoyuan 已提交
98
    for (int i = 0; i < batchSize; i++) {
H
hedaoyuan 已提交
99 100
      DepthWiseConv(inputPadding,
                    filterData,
101 102
                    padInputHeight,
                    padInputWidth,
H
hedaoyuan 已提交
103 104 105 106 107
                    outputChannels,
                    outputHeight,
                    outputWidth,
                    filterMultiplier,
                    outputData);
108
      inputPadding += inputChannels * padInputHeight * padInputWidth;
H
hedaoyuan 已提交
109 110 111 112 113
      outputData += outputChannels * outputHeight * outputWidth;
    }
  }
};

H
hedaoyuan 已提交
114
#ifndef PADDLE_TYPE_DOUBLE
H
hedaoyuan 已提交
115
REGISTER_TYPED_FUNC(NeonDepthwiseConv, CPU, NeonDepthwiseConvFunction);
H
hedaoyuan 已提交
116
#endif
H
hedaoyuan 已提交
117 118 119 120

#endif

}  // namespace paddle