mobilenetv3.py 15.9 KB
Newer Older
N
Nyakku Shigure 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
from paddle.utils.download import get_weights_path_from_url
from functools import partial

from .utils import _make_divisible
from ..ops import ConvNormActivation

__all__ = []

model_urls = {
    "mobilenet_v3_small_x1.0":
    ("https://paddle-hapi.bj.bcebos.com/models/mobilenet_v3_small_x1.0.pdparams",
     "34fe0e7c1f8b00b2b056ad6788d0590c"),
    "mobilenet_v3_large_x1.0":
    ("https://paddle-hapi.bj.bcebos.com/models/mobilenet_v3_large_x1.0.pdparams",
     "118db5792b4e183b925d8e8e334db3df"),
}


class SqueezeExcitation(nn.Layer):
    """
    This block implements the Squeeze-and-Excitation block from https://arxiv.org/abs/1709.01507 (see Fig. 1).
42
    Parameters ``activation``, and ``scale_activation`` correspond to ``delta`` and ``sigma`` in eq. 3.
N
Nyakku Shigure 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
    This code is based on the torchvision code with modifications.
    You can also see at https://github.com/pytorch/vision/blob/main/torchvision/ops/misc.py#L127
    Args:
        input_channels (int): Number of channels in the input image
        squeeze_channels (int): Number of squeeze channels
        activation (Callable[..., paddle.nn.Layer], optional): ``delta`` activation. Default: ``paddle.nn.ReLU``
        scale_activation (Callable[..., paddle.nn.Layer]): ``sigma`` activation. Default: ``paddle.nn.Sigmoid``
    """

    def __init__(self,
                 input_channels,
                 squeeze_channels,
                 activation=nn.ReLU,
                 scale_activation=nn.Sigmoid):
        super().__init__()
        self.avgpool = nn.AdaptiveAvgPool2D(1)
        self.fc1 = nn.Conv2D(input_channels, squeeze_channels, 1)
        self.fc2 = nn.Conv2D(squeeze_channels, input_channels, 1)
        self.activation = activation()
        self.scale_activation = scale_activation()

    def _scale(self, input):
        scale = self.avgpool(input)
        scale = self.fc1(scale)
        scale = self.activation(scale)
        scale = self.fc2(scale)
        return self.scale_activation(scale)

    def forward(self, input):
        scale = self._scale(input)
        return scale * input


class InvertedResidualConfig:
    def __init__(self,
                 in_channels,
                 kernel,
                 expanded_channels,
                 out_channels,
                 use_se,
                 activation,
                 stride,
                 scale=1.0):
        self.in_channels = self.adjust_channels(in_channels, scale=scale)
        self.kernel = kernel
        self.expanded_channels = self.adjust_channels(
            expanded_channels, scale=scale)
        self.out_channels = self.adjust_channels(out_channels, scale=scale)
        self.use_se = use_se
        if activation is None:
            self.activation_layer = None
        elif activation == "relu":
            self.activation_layer = nn.ReLU
        elif activation == "hardswish":
            self.activation_layer = nn.Hardswish
        else:
            raise RuntimeError("The activation function is not supported: {}".
                               format(activation))
        self.stride = stride

    @staticmethod
    def adjust_channels(channels, scale=1.0):
        return _make_divisible(channels * scale, 8)


class InvertedResidual(nn.Layer):
    def __init__(self, in_channels, expanded_channels, out_channels,
                 filter_size, stride, use_se, activation_layer, norm_layer):
        super().__init__()
        self.use_res_connect = stride == 1 and in_channels == out_channels
        self.use_se = use_se
        self.expand = in_channels != expanded_channels

        if self.expand:
            self.expand_conv = ConvNormActivation(
                in_channels=in_channels,
                out_channels=expanded_channels,
                kernel_size=1,
                stride=1,
                padding=0,
                norm_layer=norm_layer,
                activation_layer=activation_layer)

        self.bottleneck_conv = ConvNormActivation(
            in_channels=expanded_channels,
            out_channels=expanded_channels,
            kernel_size=filter_size,
            stride=stride,
            padding=int((filter_size - 1) // 2),
            groups=expanded_channels,
            norm_layer=norm_layer,
            activation_layer=activation_layer)

        if self.use_se:
            self.mid_se = SqueezeExcitation(
                expanded_channels,
                _make_divisible(expanded_channels // 4),
                scale_activation=nn.Hardsigmoid)

        self.linear_conv = ConvNormActivation(
            in_channels=expanded_channels,
            out_channels=out_channels,
            kernel_size=1,
            stride=1,
            padding=0,
            norm_layer=norm_layer,
            activation_layer=None)

    def forward(self, x):
        identity = x
        if self.expand:
            x = self.expand_conv(x)
        x = self.bottleneck_conv(x)
        if self.use_se:
            x = self.mid_se(x)
        x = self.linear_conv(x)
        if self.use_res_connect:
            x = paddle.add(identity, x)
        return x


class MobileNetV3(nn.Layer):
    """MobileNetV3 model from
    `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.

    Args:
        config (list[InvertedResidualConfig]): MobileNetV3 depthwise blocks config.
        last_channel (int): The number of channels on the penultimate layer.
        scale (float, optional): Scale of channels in each layer. Default: 1.0.
        num_classes (int, optional): Output dim of last fc layer. If num_classes <=0, last fc layer
                            will not be defined. Default: 1000.
        with_pool (bool, optional): Use pool before the last fc layer or not. Default: True.
    """

    def __init__(self,
                 config,
                 last_channel,
                 scale=1.0,
                 num_classes=1000,
                 with_pool=True):
        super().__init__()

        self.config = config
        self.scale = scale
        self.last_channel = last_channel
        self.num_classes = num_classes
        self.with_pool = with_pool
        self.firstconv_in_channels = config[0].in_channels
        self.lastconv_in_channels = config[-1].in_channels
        self.lastconv_out_channels = self.lastconv_in_channels * 6
        norm_layer = partial(nn.BatchNorm2D, epsilon=0.001, momentum=0.99)

        self.conv = ConvNormActivation(
            in_channels=3,
            out_channels=self.firstconv_in_channels,
            kernel_size=3,
            stride=2,
            padding=1,
            groups=1,
            activation_layer=nn.Hardswish,
            norm_layer=norm_layer)

        self.blocks = nn.Sequential(*[
            InvertedResidual(
                in_channels=cfg.in_channels,
                expanded_channels=cfg.expanded_channels,
                out_channels=cfg.out_channels,
                filter_size=cfg.kernel,
                stride=cfg.stride,
                use_se=cfg.use_se,
                activation_layer=cfg.activation_layer,
                norm_layer=norm_layer) for cfg in self.config
        ])

        self.lastconv = ConvNormActivation(
            in_channels=self.lastconv_in_channels,
            out_channels=self.lastconv_out_channels,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
            norm_layer=norm_layer,
            activation_layer=nn.Hardswish)

        if with_pool:
            self.avgpool = nn.AdaptiveAvgPool2D(1)

        if num_classes > 0:
            self.classifier = nn.Sequential(
                nn.Linear(self.lastconv_out_channels, self.last_channel),
                nn.Hardswish(),
                nn.Dropout(p=0.2),
                nn.Linear(self.last_channel, num_classes))

    def forward(self, x):
        x = self.conv(x)
        x = self.blocks(x)
        x = self.lastconv(x)

        if self.with_pool:
            x = self.avgpool(x)

        if self.num_classes > 0:
            x = paddle.flatten(x, 1)
            x = self.classifier(x)

        return x


class MobileNetV3Small(MobileNetV3):
    """MobileNetV3 Small architecture model from
    `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.

    Args:
        scale (float, optional): Scale of channels in each layer. Default: 1.0.
        num_classes (int, optional): Output dim of last fc layer. If num_classes <=0, last fc layer
                            will not be defined. Default: 1000.
        with_pool (bool, optional): Use pool before the last fc layer or not. Default: True.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import MobileNetV3Small

            # build model
            model = MobileNetV3Small(scale=1.0)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
    """

    def __init__(self, scale=1.0, num_classes=1000, with_pool=True):
        config = [
            InvertedResidualConfig(16, 3, 16, 16, True, "relu", 2, scale),
            InvertedResidualConfig(16, 3, 72, 24, False, "relu", 2, scale),
            InvertedResidualConfig(24, 3, 88, 24, False, "relu", 1, scale),
            InvertedResidualConfig(24, 5, 96, 40, True, "hardswish", 2, scale),
            InvertedResidualConfig(40, 5, 240, 40, True, "hardswish", 1, scale),
            InvertedResidualConfig(40, 5, 240, 40, True, "hardswish", 1, scale),
            InvertedResidualConfig(40, 5, 120, 48, True, "hardswish", 1, scale),
            InvertedResidualConfig(48, 5, 144, 48, True, "hardswish", 1, scale),
            InvertedResidualConfig(48, 5, 288, 96, True, "hardswish", 2, scale),
            InvertedResidualConfig(96, 5, 576, 96, True, "hardswish", 1, scale),
            InvertedResidualConfig(96, 5, 576, 96, True, "hardswish", 1, scale),
        ]
        last_channel = _make_divisible(1024 * scale, 8)
        super().__init__(
            config,
            last_channel=last_channel,
            scale=scale,
            with_pool=with_pool,
            num_classes=num_classes)


class MobileNetV3Large(MobileNetV3):
    """MobileNetV3 Large architecture model from
    `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.

    Args:
        scale (float, optional): Scale of channels in each layer. Default: 1.0.
        num_classes (int, optional): Output dim of last fc layer. If num_classes <=0, last fc layer
                            will not be defined. Default: 1000.
        with_pool (bool, optional): Use pool before the last fc layer or not. Default: True.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import MobileNetV3Large

            # build model
            model = MobileNetV3Large(scale=1.0)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
    """

    def __init__(self, scale=1.0, num_classes=1000, with_pool=True):
        config = [
            InvertedResidualConfig(16, 3, 16, 16, False, "relu", 1, scale),
            InvertedResidualConfig(16, 3, 64, 24, False, "relu", 2, scale),
            InvertedResidualConfig(24, 3, 72, 24, False, "relu", 1, scale),
            InvertedResidualConfig(24, 5, 72, 40, True, "relu", 2, scale),
            InvertedResidualConfig(40, 5, 120, 40, True, "relu", 1, scale),
            InvertedResidualConfig(40, 5, 120, 40, True, "relu", 1, scale),
            InvertedResidualConfig(40, 3, 240, 80, False, "hardswish", 2,
                                   scale),
            InvertedResidualConfig(80, 3, 200, 80, False, "hardswish", 1,
                                   scale),
            InvertedResidualConfig(80, 3, 184, 80, False, "hardswish", 1,
                                   scale),
            InvertedResidualConfig(80, 3, 184, 80, False, "hardswish", 1,
                                   scale),
            InvertedResidualConfig(80, 3, 480, 112, True, "hardswish", 1,
                                   scale),
            InvertedResidualConfig(112, 3, 672, 112, True, "hardswish", 1,
                                   scale),
            InvertedResidualConfig(112, 5, 672, 160, True, "hardswish", 2,
                                   scale),
            InvertedResidualConfig(160, 5, 960, 160, True, "hardswish", 1,
                                   scale),
            InvertedResidualConfig(160, 5, 960, 160, True, "hardswish", 1,
                                   scale),
        ]
        last_channel = _make_divisible(1280 * scale, 8)
        super().__init__(
            config,
            last_channel=last_channel,
            scale=scale,
            with_pool=with_pool,
            num_classes=num_classes)


def _mobilenet_v3(arch, pretrained=False, scale=1.0, **kwargs):
    if arch == "mobilenet_v3_large":
        model = MobileNetV3Large(scale=scale, **kwargs)
    else:
        model = MobileNetV3Small(scale=scale, **kwargs)
    if pretrained:
        arch = "{}_x{}".format(arch, scale)
        assert (
            arch in model_urls
        ), "{} model do not have a pretrained model now, you should set pretrained=False".format(
            arch)
        weight_path = get_weights_path_from_url(model_urls[arch][0],
                                                model_urls[arch][1])

        param = paddle.load(weight_path)
        model.set_dict(param)
    return model


def mobilenet_v3_small(pretrained=False, scale=1.0, **kwargs):
    """MobileNetV3 Small architecture model from
    `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
        scale (float, optional): Scale of channels in each layer. Default: 1.0.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import mobilenet_v3_small

            # build model
            model = mobilenet_v3_small()

            # build model and load imagenet pretrained weight
            # model = mobilenet_v3_small(pretrained=True)

            # build mobilenet v3 small model with scale=0.5
            model = mobilenet_v3_small(scale=0.5)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)

    """
    model = _mobilenet_v3(
        "mobilenet_v3_small", scale=scale, pretrained=pretrained, **kwargs)
    return model


def mobilenet_v3_large(pretrained=False, scale=1.0, **kwargs):
    """MobileNetV3 Large architecture model from
    `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
        scale (float, optional): Scale of channels in each layer. Default: 1.0.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import mobilenet_v3_large

            # build model
            model = mobilenet_v3_large()

            # build model and load imagenet pretrained weight
            # model = mobilenet_v3_large(pretrained=True)

            # build mobilenet v3 large model with scale=0.5
            model = mobilenet_v3_large(scale=0.5)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)

    """
    model = _mobilenet_v3(
        "mobilenet_v3_large", scale=scale, pretrained=pretrained, **kwargs)
    return model