test_py_func_op.py 6.9 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
sneaxiy 已提交
15
import os
S
sneaxiy 已提交
16
import paddle.fluid as fluid
17
from paddle.fluid import compiler
S
sneaxiy 已提交
18 19 20 21 22
import paddle
import unittest
import six
import numpy as np

S
sneaxiy 已提交
23 24 25 26 27
dev_cnt = 2
if fluid.core.is_compiled_with_cuda():
    dev_cnt = fluid.core.get_cuda_device_count()
os.environ['CPU_NUM'] = str(dev_cnt)

S
sneaxiy 已提交
28

S
sneaxiy 已提交
29
def dummy_func_with_no_input():
S
sneaxiy 已提交
30
    return np.array([0], dtype='float32')
S
sneaxiy 已提交
31 32 33 34 35 36


def dummy_func_with_no_output(x):
    pass


37 38 39 40
def dummy_func_with_multi_input_output(x, y):
    return np.array(x), np.array(y)


S
sneaxiy 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
def tanh(x):
    return np.tanh(x)


def tanh_grad(y, dy):
    return np.array(dy) * (1 - np.square(np.array(y)))


def cross_entropy(logits, labels):
    logits = np.array(logits)
    labels = np.array(labels)
    M = logits.shape[0]
    N = logits.shape[1]
    ret = np.ndarray([M, 1]).astype(logits.dtype)
    for idx in six.moves.range(M):
        ret[idx][0] = -np.log(logits[idx][labels[idx][0]])
    return ret


def cross_entropy_grad(logits, labels, bwd_dout):
    logits = np.array(logits)
    labels = np.array(labels)
    bwd_dout = np.array(bwd_dout)
    M = logits.shape[0]
    N = logits.shape[1]
    dlogits = np.zeros([M, N]).astype(logits.dtype)
    for idx in six.moves.range(M):
        dlogits[idx][labels[idx][0]] = -bwd_dout[idx] / logits[idx][labels[idx][
            0]]
    return dlogits, None


def simple_fc_net(img, label, use_py_func_op):
    hidden = img
    for idx in range(4):
        hidden = fluid.layers.fc(
            hidden,
            size=200,
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=1.0)))
S
sneaxiy 已提交
81
        if not use_py_func_op:
S
sneaxiy 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
            hidden = fluid.layers.tanh(hidden)
        else:
            new_hidden = fluid.default_main_program().current_block(
            ).create_var(
                name='hidden_{}'.format(idx),
                dtype='float32',
                shape=hidden.shape)
            hidden = fluid.layers.py_func(
                func=tanh,
                x=hidden,
                out=new_hidden,
                backward_func=tanh_grad,
                skip_vars_in_backward_input=hidden)

    prediction = fluid.layers.fc(hidden, size=10, act='softmax')
    if not use_py_func_op:
        loss = fluid.layers.cross_entropy(input=prediction, label=label)
    else:
        loss = fluid.default_main_program().current_block().create_var(
            name='loss', dtype='float32', shape=[-1, 1])
S
sneaxiy 已提交
102
        loss = fluid.layers.py_func(
S
sneaxiy 已提交
103 104 105 106 107
            func=cross_entropy,
            x=[prediction, label],
            out=loss,
            backward_func=cross_entropy_grad,
            skip_vars_in_backward_input=loss)
S
sneaxiy 已提交
108

S
sneaxiy 已提交
109 110 111 112
        dummy_var = fluid.default_main_program().current_block().create_var(
            name='test_tmp_var', dtype='float32', shape=[1])
        fluid.layers.py_func(
            func=dummy_func_with_no_input, x=None, out=dummy_var)
S
sneaxiy 已提交
113
        loss += dummy_var
S
sneaxiy 已提交
114 115
        fluid.layers.py_func(func=dummy_func_with_no_output, x=loss, out=None)

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
        loss_out = fluid.default_main_program().current_block().create_var(
            dtype='float32', shape=[-1, 1])
        dummy_var_out = fluid.default_main_program().current_block().create_var(
            dtype='float32', shape=[1])
        fluid.layers.py_func(
            func=dummy_func_with_multi_input_output,
            x=(loss, dummy_var),
            out=(loss_out, dummy_var_out))
        assert loss == loss_out and dummy_var == dummy_var_out, \
            "py_func failed with multi input and output"

        fluid.layers.py_func(
            func=dummy_func_with_multi_input_output,
            x=[loss, dummy_var],
            out=[loss_out, dummy_var_out])
        assert loss == loss_out and dummy_var == dummy_var_out, \
            "py_func failed with multi input and output"

S
sneaxiy 已提交
134 135 136 137 138
    loss = fluid.layers.mean(loss)
    return loss


def reader():
S
sneaxiy 已提交
139
    for _ in six.moves.range(dev_cnt * 100):
S
sneaxiy 已提交
140 141 142 143
        yield np.random.random([784]), np.random.random_integers(
            size=[1], low=0, high=9)


S
sneaxiy 已提交
144
def test_main(use_cuda, use_py_func_op, use_parallel_executor):
S
sneaxiy 已提交
145 146 147 148 149
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return None

    with fluid.program_guard(fluid.Program(), fluid.Program()):
        with fluid.scope_guard(fluid.core.Scope()):
C
cnn 已提交
150
            gen = paddle.seed(1)
S
sneaxiy 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163
            np.random.seed(1)
            img = fluid.layers.data(name='image', shape=[784], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            loss = simple_fc_net(img, label, use_py_func_op)
            optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
            optimizer.minimize(loss)

            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            feeder = fluid.DataFeeder(feed_list=[img, label], place=place)
            r = paddle.batch(reader, batch_size=10)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
164

C
chengduo 已提交
165 166
            train_cp = fluid.default_main_program()

S
sneaxiy 已提交
167
            if use_parallel_executor:
C
chengduo 已提交
168 169
                train_cp = compiler.CompiledProgram(fluid.default_main_program(
                ))
170
                train_cp = train_cp.with_data_parallel(loss_name=loss.name)
S
sneaxiy 已提交
171 172 173 174
                fetch_list = [loss.name]
            else:
                fetch_list = [loss]

S
sneaxiy 已提交
175 176 177
            ret = []
            for epoch_id in six.moves.range(2):
                for d in r():
178 179 180
                    L, = exe.run(train_cp,
                                 feed=feeder.feed(d),
                                 fetch_list=fetch_list)
S
sneaxiy 已提交
181
                    ret.append(L)
S
sneaxiy 已提交
182 183 184
            return np.array(ret)


S
sneaxiy 已提交
185 186 187 188
class TestPyFuncOpUseExecutor(unittest.TestCase):
    def setUp(self):
        self.use_parallel_executor = False

S
sneaxiy 已提交
189 190
    def test_loss_diff(self):
        for use_cuda in [True, False]:
L
Leo Chen 已提交
191
            losses = []
S
sneaxiy 已提交
192
            for use_py_func_op in [True, False]:
S
sneaxiy 已提交
193 194
                L = test_main(use_cuda, use_py_func_op,
                              self.use_parallel_executor)
S
sneaxiy 已提交
195 196 197
                if L is not None:
                    losses.append(L)

L
Leo Chen 已提交
198 199 200
                for idx in six.moves.range(len(losses) - 1):
                    max_diff = np.max(np.abs(losses[idx] - losses[0]))
                    self.assertAlmostEqual(max_diff, 0, delta=1e-3)
S
sneaxiy 已提交
201 202


S
sneaxiy 已提交
203
class TestPyFuncOpUseParallelExecutor(TestPyFuncOpUseExecutor):
S
sneaxiy 已提交
204 205 206 207
    def setUp(self):
        self.use_parallel_executor = True


S
sneaxiy 已提交
208 209
if __name__ == '__main__':
    unittest.main()