test_conv_nn_grad.py 19.2 KB
Newer Older
L
lvmengsi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
H
hong 已提交
19
import paddle
L
lvmengsi 已提交
20 21 22 23 24 25 26 27 28 29 30 31

import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import gradient_checker

from decorator_helper import prog_scope


class TestConvDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
L
liym27 已提交
32
        shape = [2, 4, 3, 3]
L
lvmengsi 已提交
33
        eps = 0.005
R
ronnywang 已提交
34
        dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64
L
lvmengsi 已提交
35
        x = layers.data('x', shape, False, dtype)
L
liym27 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
        y = layers.conv2d(x, 2, 1, groups=1, bias_attr=False)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]

        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Z
zhangchunle 已提交
55
class TestConvDoubleGradCheckTest0(unittest.TestCase):
L
liym27 已提交
56 57 58 59
    @prog_scope()
    def func(self, place):
        shape = [2, 4, 3, 3]
        eps = 0.005
R
ronnywang 已提交
60
        dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64
L
liym27 已提交
61 62
        x = layers.data('x', shape, False, dtype)
        y = layers.conv2d(x, 2, 1, bias_attr=False)
L
lvmengsi 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConvDoubleGradCheckTest1(unittest.TestCase):
    @prog_scope()
    def func(self, place):
L
liym27 已提交
83
        shape = [2, 3, 3, 3]
L
lvmengsi 已提交
84
        eps = 0.005
R
ronnywang 已提交
85
        dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64
L
lvmengsi 已提交
86
        x = layers.data('x', shape, False, dtype)
L
liym27 已提交
87
        y = layers.conv2d(x, 2, 1, padding=1, bias_attr=False)
L
lvmengsi 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv3DDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 4, 3, 4, 2]
        eps = 0.005
R
ronnywang 已提交
110
        dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64
L
lvmengsi 已提交
111
        x = layers.data('x', shape, False, dtype)
L
liym27 已提交
112
        y = layers.conv3d(x, 2, 1, bias_attr=False)
L
lvmengsi 已提交
113 114 115 116 117 118 119 120 121 122
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
H
hong 已提交
123 124
        #places = [fluid.CPUPlace()]
        places = []
L
lvmengsi 已提交
125 126 127 128 129 130 131 132 133 134 135
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv3DDoubleGradCheckTest1(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 4, 5, 3, 2]
        eps = 0.005
R
ronnywang 已提交
136
        dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64
L
lvmengsi 已提交
137
        x = layers.data('x', shape, False, dtype)
L
liym27 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        y = layers.conv3d(x, 2, 1, padding=1, bias_attr=False)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv2DoubleGradCheck_AsyPadding(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 2, 3, 3]
        eps = 0.005
R
ronnywang 已提交
161
        dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64
L
liym27 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
        x = layers.data('x', shape, False, dtype)
        y = layers.conv2d(
            input=x,
            num_filters=2,
            filter_size=1,
            padding=[1, 0, 0, 1],
            bias_attr=False,
            use_cudnn=True)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv2DoubleGradCheck_PaddingSAME(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 2, 3, 3]
        eps = 0.005
R
ronnywang 已提交
192
        dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64
L
liym27 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
        x = layers.data('x', shape, False, dtype)
        y = layers.conv2d(
            input=x,
            num_filters=2,
            filter_size=1,
            padding="SAME",
            bias_attr=False,
            use_cudnn=True)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv2DoubleGradCheck_PaddingVALID(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 2, 3, 3]
        eps = 0.005
R
ronnywang 已提交
223
        dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64
L
liym27 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        x = layers.data('x', shape, False, dtype)
        y = layers.conv2d(
            input=x,
            num_filters=2,
            filter_size=1,
            padding="VALID",
            bias_attr=False,
            use_cudnn=True)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv2DoubleGradCheck_ChannelLast(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 2, 3, 3]
        eps = 0.005
R
ronnywang 已提交
254
        dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64
L
liym27 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
        x = layers.data('x', shape, False, dtype)
        y = layers.conv2d(
            input=x,
            num_filters=2,
            filter_size=1,
            padding=[1, 1],
            bias_attr=False,
            use_cudnn=True,
            groups=1,
            data_format="NHWC")
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv2DoubleGradCheck_ChannelLast_AsyPadding(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 2, 3, 3]
        eps = 0.005
R
ronnywang 已提交
287
        dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64
L
liym27 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
        x = layers.data('x', shape, False, dtype)
        y = layers.conv2d(
            input=x,
            num_filters=2,
            filter_size=1,
            padding=[1, 0, 1, 0],
            bias_attr=False,
            use_cudnn=True,
            groups=1,
            data_format="NHWC")
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv3DDoubleGradCheck_AsyPadding(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 2, 2, 2, 2]
        eps = 0.005
R
ronnywang 已提交
320
        dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64
L
liym27 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
        x = layers.data('x', shape, False, dtype)
        y = layers.conv3d(
            input=x,
            num_filters=2,
            filter_size=1,
            padding=[1, 0, 0, 1, 1, 2],
            bias_attr=False,
            use_cudnn=True)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv3DoubleGradCheck_PaddingSAME(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 2, 2, 2, 2]
        eps = 0.005
R
ronnywang 已提交
351
        dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64
L
liym27 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
        x = layers.data('x', shape, False, dtype)
        y = layers.conv3d(
            input=x,
            num_filters=2,
            filter_size=1,
            padding="SAME",
            groups=1,
            bias_attr=False,
            use_cudnn=True)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv3DoubleGradCheck_PaddingVALID(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 2, 3, 3, 2]
        eps = 0.005
R
ronnywang 已提交
383
        dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64
L
liym27 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
        x = layers.data('x', shape, False, dtype)
        y = layers.conv3d(
            input=x,
            num_filters=2,
            filter_size=1,
            padding="VALID",
            bias_attr=False,
            use_cudnn=True)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv3DDoubleGradCheck_ChannelLast(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 2, 2, 2, 3]
        eps = 0.005
R
ronnywang 已提交
414
        dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64
L
liym27 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
        x = layers.data('x', shape, False, dtype)
        y = layers.conv3d(
            input=x,
            num_filters=2,
            filter_size=1,
            padding=[1, 1, 1],
            bias_attr=False,
            use_cudnn=True,
            groups=1,
            data_format="NDHWC")
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


C
cnn 已提交
442
class TestConv3DDoubleGradCheck_ChannelLast_AsyPadding(unittest.TestCase):
L
liym27 已提交
443 444 445 446
    @prog_scope()
    def func(self, place):
        shape = [2, 2, 2, 2, 3]
        eps = 0.005
R
ronnywang 已提交
447
        dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64
L
liym27 已提交
448 449 450 451 452 453 454 455 456 457
        x = layers.data('x', shape, False, dtype)
        y = layers.conv3d(
            input=x,
            num_filters=2,
            filter_size=1,
            padding=[1, 0, 1, 0, 1, 0],
            bias_attr=False,
            use_cudnn=True,
            groups=1,
            data_format="NDHWC")
L
lvmengsi 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


475 476 477 478 479
class TestDepthWiseConvDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 4, 3, 3]
        eps = 0.005
R
ronnywang 已提交
480
        dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
        x = layers.data('x', shape, False, dtype)

        # condition of depthwise conv: 
        # use_cudnn == False
        # groups == filters
        # num_filters % num_channels == 0
        y = layers.conv2d(
            x, shape[1], 1, groups=shape[1], bias_attr=False, use_cudnn=False)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = []
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
class TestDepthWiseConvDoubleGradCheckCase1(unittest.TestCase):
    def depthwise_conv2d_wrapper(self, x):
        return paddle.nn.functional.conv2d(x[0], x[1], groups=4)

    @prog_scope()
    def func(self, place):
        x_shape = [2, 4, 3, 3]
        w_shape = [4, 1, 3, 3]
        eps = 0.005
        dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64
        x = layers.data('x', x_shape, False, dtype)
        w = layers.data('w', w_shape, False, dtype)

        # condition of depthwise conv: 
        # use_cudnn == False
        # groups == filters
        # num_filters % num_channels == 0

        y = paddle.nn.functional.conv2d(x, w, groups=4)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
        w_arr = np.random.uniform(-1, 1, w_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x, w], y, x_init=[x_arr, w_arr], place=place, eps=eps)
        gradient_checker.double_grad_check_for_dygraph(
            self.depthwise_conv2d_wrapper, [x, w],
            y,
            x_init=[x_arr, w_arr],
            place=place)

    def test_grad(self):
        places = []
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv3DDoubleGradCheck_NN(unittest.TestCase):
    def conv3d_wrapper(self, x):
        return paddle.nn.functional.conv3d(x[0], x[1])

    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 8, 8, 8]
        w_shape = [6, 3, 3, 3, 3]
        eps = 0.005
        dtype = np.float32 if fluid.core.is_compiled_with_rocm() else np.float64
        x = layers.data('x', x_shape, False, dtype)
        w = layers.data('w', w_shape, False, dtype)
        x.persistable = True
        w.persistable = True
        y = paddle.nn.functional.conv3d(x, w)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
        w_arr = np.random.uniform(-1, 1, w_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x, w], y, x_init=[x_arr, w_arr], place=place, eps=eps)
        gradient_checker.double_grad_check_for_dygraph(
            self.conv3d_wrapper, [x, w], y, x_init=[x_arr, w_arr], place=place)

    def test_grad(self):
        places = []
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


L
lvmengsi 已提交
575
if __name__ == "__main__":
H
hong 已提交
576
    paddle.enable_static()
L
lvmengsi 已提交
577
    unittest.main()