test_conv_nn_grad.py 15.0 KB
Newer Older
L
lvmengsi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import gradient_checker

from decorator_helper import prog_scope


class TestConvDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
L
liym27 已提交
31
        shape = [2, 4, 3, 3]
L
lvmengsi 已提交
32 33 34
        eps = 0.005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype)
L
liym27 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
        y = layers.conv2d(x, 2, 1, groups=1, bias_attr=False)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        places = []

        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConvDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 4, 3, 3]
        eps = 0.005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype)
        y = layers.conv2d(x, 2, 1, bias_attr=False)
L
lvmengsi 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConvDoubleGradCheckTest1(unittest.TestCase):
    @prog_scope()
    def func(self, place):
L
liym27 已提交
83
        shape = [2, 3, 3, 3]
L
lvmengsi 已提交
84 85 86
        eps = 0.005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype)
L
liym27 已提交
87
        y = layers.conv2d(x, 2, 1, padding=1, bias_attr=False)
L
lvmengsi 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv3DDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 4, 3, 4, 2]
        eps = 0.005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype)
L
liym27 已提交
112
        y = layers.conv3d(x, 2, 1, bias_attr=False)
L
lvmengsi 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv3DDoubleGradCheckTest1(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 4, 5, 3, 2]
        eps = 0.005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype)
L
liym27 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
        y = layers.conv3d(x, 2, 1, padding=1, bias_attr=False)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv2DoubleGradCheck_AsyPadding(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 2, 3, 3]
        eps = 0.005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype)
        y = layers.conv2d(
            input=x,
            num_filters=2,
            filter_size=1,
            padding=[1, 0, 0, 1],
            bias_attr=False,
            use_cudnn=True)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv2DoubleGradCheck_PaddingSAME(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 2, 3, 3]
        eps = 0.005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype)
        y = layers.conv2d(
            input=x,
            num_filters=2,
            filter_size=1,
            padding="SAME",
            bias_attr=False,
            use_cudnn=True)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv2DoubleGradCheck_PaddingVALID(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 2, 3, 3]
        eps = 0.005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype)
        y = layers.conv2d(
            input=x,
            num_filters=2,
            filter_size=1,
            padding="VALID",
            bias_attr=False,
            use_cudnn=True)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv2DoubleGradCheck_ChannelLast(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 2, 3, 3]
        eps = 0.005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype)
        y = layers.conv2d(
            input=x,
            num_filters=2,
            filter_size=1,
            padding=[1, 1],
            bias_attr=False,
            use_cudnn=True,
            groups=1,
            data_format="NHWC")
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv2DoubleGradCheck_ChannelLast_AsyPadding(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 2, 3, 3]
        eps = 0.005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype)
        y = layers.conv2d(
            input=x,
            num_filters=2,
            filter_size=1,
            padding=[1, 0, 1, 0],
            bias_attr=False,
            use_cudnn=True,
            groups=1,
            data_format="NHWC")
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv3DDoubleGradCheck_AsyPadding(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 2, 2, 2, 2]
        eps = 0.005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype)
        y = layers.conv3d(
            input=x,
            num_filters=2,
            filter_size=1,
            padding=[1, 0, 0, 1, 1, 2],
            bias_attr=False,
            use_cudnn=True)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv3DoubleGradCheck_PaddingSAME(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 2, 2, 2, 2]
        eps = 0.005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype)
        y = layers.conv3d(
            input=x,
            num_filters=2,
            filter_size=1,
            padding="SAME",
            groups=1,
            bias_attr=False,
            use_cudnn=True)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv3DoubleGradCheck_PaddingVALID(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 2, 3, 3, 2]
        eps = 0.005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype)
        y = layers.conv3d(
            input=x,
            num_filters=2,
            filter_size=1,
            padding="VALID",
            bias_attr=False,
            use_cudnn=True)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv3DDoubleGradCheck_ChannelLast(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 2, 2, 2, 3]
        eps = 0.005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype)
        y = layers.conv3d(
            input=x,
            num_filters=2,
            filter_size=1,
            padding=[1, 1, 1],
            bias_attr=False,
            use_cudnn=True,
            groups=1,
            data_format="NDHWC")
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConv3dDoubleGradCheck_ChannelLast_AsyPadding(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 2, 2, 2, 3]
        eps = 0.005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype)
        y = layers.conv3d(
            input=x,
            num_filters=2,
            filter_size=1,
            padding=[1, 0, 1, 0, 1, 0],
            bias_attr=False,
            use_cudnn=True,
            groups=1,
            data_format="NDHWC")
L
lvmengsi 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        w = fluid.default_main_program().global_block().all_parameters()
        w_arr = []
        for p in w:
            w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
        gradient_checker.double_grad_check(
            [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


if __name__ == "__main__":
    unittest.main()