normal.py 10.9 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
16 17
from collections.abc import Iterable

18
import numpy as np
19

20
import paddle
21
from paddle.distribution import distribution
22
from paddle.fluid.data_feeder import check_type, convert_dtype
23
from paddle.fluid.framework import _non_static_mode
24 25 26 27 28
from paddle.fluid.layers import (
    nn,
    tensor,
)

29

30
class Normal(distribution.Distribution):
31 32 33 34 35 36 37 38
    r"""The Normal distribution with location `loc` and `scale` parameters.

    Mathematical details

    The probability density function (pdf) is

    .. math::

39
        pdf(x; \mu, \sigma) = \frac{1}{Z}e^{\frac {-0.5 (x - \mu)^2}  {\sigma^2} }
40 41 42 43 44 45 46 47 48 49 50 51

    .. math::

        Z = (2 \pi \sigma^2)^{0.5}

    In the above equation:

    * :math:`loc = \mu`: is the mean.
    * :math:`scale = \sigma`: is the std.
    * :math:`Z`: is the normalization constant.

    Args:
52 53
        loc(int|float|list|tuple|numpy.ndarray|Tensor): The mean of normal distribution.The data type is float32 and float64.
        scale(int|float|list|tuple|numpy.ndarray|Tensor): The std of normal distribution.The data type is float32 and float64.
54 55 56 57
        name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Examples:
        .. code-block:: python
58

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
            import paddle
            from paddle.distribution import Normal

            # Define a single scalar Normal distribution.
            dist = Normal(loc=0., scale=3.)
            # Define a batch of two scalar valued Normals.
            # The first has mean 1 and standard deviation 11, the second 2 and 22.
            dist = Normal(loc=[1., 2.], scale=[11., 22.])
            # Get 3 samples, returning a 3 x 2 tensor.
            dist.sample([3])

            # Define a batch of two scalar valued Normals.
            # Both have mean 1, but different standard deviations.
            dist = Normal(loc=1., scale=[11., 22.])

            # Complete example
            value_tensor = paddle.to_tensor([0.8], dtype="float32")

            normal_a = Normal([0.], [1.])
            normal_b = Normal([0.5], [2.])
            sample = normal_a.sample([2])
            # a random tensor created by normal distribution with shape: [2, 1]
            entropy = normal_a.entropy()
            # [1.4189385] with shape: [1]
            lp = normal_a.log_prob(value_tensor)
            # [-1.2389386] with shape: [1]
            p = normal_a.probs(value_tensor)
            # [0.28969154] with shape: [1]
            kl = normal_a.kl_divergence(normal_b)
            # [0.34939718] with shape: [1]
89 90 91
    """

    def __init__(self, loc, scale, name=None):
J
Jiabin Yang 已提交
92
        if not _non_static_mode():
93 94 95 96 97 98 99 100 101 102 103 104
            check_type(
                loc,
                'loc',
                (int, float, np.ndarray, tensor.Variable, list, tuple),
                'Normal',
            )
            check_type(
                scale,
                'scale',
                (int, float, np.ndarray, tensor.Variable, list, tuple),
                'Normal',
            )
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

        self.batch_size_unknown = False
        self.all_arg_is_float = False
        self.name = name if name is not None else 'Normal'
        self.dtype = 'float32'

        if isinstance(loc, int):
            loc = float(loc)
        if isinstance(scale, int):
            scale = float(scale)

        if self._validate_args(loc, scale):
            self.batch_size_unknown = True
            self.loc = loc
            self.scale = scale
            self.dtype = convert_dtype(loc.dtype)
        else:
            if isinstance(loc, float) and isinstance(scale, float):
                self.all_arg_is_float = True
124 125 126 127
            if isinstance(loc, np.ndarray) and str(loc.dtype) in [
                'float32',
                'float64',
            ]:
128
                self.dtype = loc.dtype
129 130 131 132
            elif isinstance(scale, np.ndarray) and str(scale.dtype) in [
                'float32',
                'float64',
            ]:
133 134 135 136 137 138
                self.dtype = scale.dtype
            # pylint: disable=unbalanced-tuple-unpacking
            self.loc, self.scale = self._to_tensor(loc, scale)
            if self.dtype != convert_dtype(self.loc.dtype):
                self.loc = tensor.cast(self.loc, dtype=self.dtype)
                self.scale = tensor.cast(self.scale, dtype=self.dtype)
139
        super().__init__(self.loc.shape)
140

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    @property
    def mean(self):
        """Mean of multinomial distribuion.

        Returns:
            Tensor: mean value.
        """
        return self.loc

    @property
    def variance(self):
        """Variance of lognormal distribution.

        Returns:
            Tensor: variance value.
        """
        return self.scale.pow(2)

    def sample(self, shape=(), seed=0):
160 161 162
        """Generate samples of the specified shape.

        Args:
163
            shape (Sequence[int], optional): Shape of the generated samples.
164
            seed (int): Python integer number.
165 166

        Returns:
167
            Tensor, A tensor with prepended dimensions shape.The data type is float32.
168 169

        """
170 171 172
        if not isinstance(shape, Iterable):
            raise TypeError('sample shape must be Iterable object.')

J
Jiabin Yang 已提交
173
        if not _non_static_mode():
174 175
            check_type(seed, 'seed', (int), 'sample')

176
        shape = list(shape)
177 178 179 180 181 182
        batch_shape = list((self.loc + self.scale).shape)
        name = self.name + '_sample'

        if self.batch_size_unknown:
            output_shape = shape + batch_shape
            zero_tmp = tensor.fill_constant_batch_size_like(
183 184
                self.loc + self.scale, batch_shape + shape, self.dtype, 0.0
            )
185
            zero_tmp_reshape = paddle.reshape(zero_tmp, output_shape)
186
            zero_tmp_shape = nn.shape(zero_tmp_reshape)
187 188 189
            normal_random_tmp = nn.gaussian_random(
                zero_tmp_shape, mean=0.0, std=1.0, seed=seed, dtype=self.dtype
            )
190
            output = normal_random_tmp * (zero_tmp_reshape + self.scale)
191
            output = paddle.add(output, self.loc, name=name)
192 193 194
            return output
        else:
            output_shape = shape + batch_shape
195
            output = nn.gaussian_random(
196 197
                output_shape, mean=0.0, std=1.0, seed=seed, dtype=self.dtype
            ) * (tensor.zeros(output_shape, dtype=self.dtype) + self.scale)
198
            output = paddle.add(output, self.loc, name=name)
199
            if self.all_arg_is_float:
200
                return paddle.reshape(output, shape, name=name)
201 202 203
            else:
                return output

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    def rsample(self, shape=()):
        """Generate reparameterized samples of the specified shape.

        Args:
          shape (Sequence[int], optional): Shape of the generated samples.

        Returns:
          Tensor: A tensor with prepended dimensions shape.The data type is float32.

        """
        if not isinstance(shape, Iterable):
            raise TypeError('sample shape must be Iterable object.')

        shape = self._extend_shape(tuple(shape))
        eps = paddle.normal(shape=shape)
219
        return self.loc + eps * self.scale
220

221 222 223 224 225 226 227
    def entropy(self):
        r"""Shannon entropy in nats.

        The entropy is

        .. math::

228
            entropy(\sigma) = 0.5 \log (2 \pi e \sigma^2)
229 230 231 232 233 234

        In the above equation:

        * :math:`scale = \sigma`: is the std.

        Returns:
235
            Tensor, Shannon entropy of normal distribution.The data type is float32.
236 237 238 239

        """
        name = self.name + '_entropy'
        batch_shape = list((self.loc + self.scale).shape)
240 241 242
        zero_tmp = tensor.fill_constant_batch_size_like(
            self.loc + self.scale, batch_shape, self.dtype, 0.0
        )
243
        return paddle.add(
244
            0.5 + zero_tmp,
245
            0.5 * math.log(2 * math.pi) + paddle.log((self.scale + zero_tmp)),
246 247
            name=name,
        )
248 249 250 251 252 253 254 255

    def log_prob(self, value):
        """Log probability density/mass function.

        Args:
          value (Tensor): The input tensor.

        Returns:
256
          Tensor: log probability.The data type is same with :attr:`value` .
257 258 259 260 261 262

        """
        name = self.name + '_log_prob'
        value = self._check_values_dtype_in_probs(self.loc, value)

        var = self.scale * self.scale
263
        log_scale = paddle.log(self.scale)
264
        return paddle.subtract(
265 266 267 268
            -1.0 * ((value - self.loc) * (value - self.loc)) / (2.0 * var),
            log_scale + math.log(math.sqrt(2.0 * math.pi)),
            name=name,
        )
269 270 271 272 273

    def probs(self, value):
        """Probability density/mass function.

        Args:
274
            value (Tensor): The input tensor.
275 276

        Returns:
277
            Tensor, probability. The data type is same with :attr:`value` .
278 279 280 281 282 283

        """
        name = self.name + '_probs'
        value = self._check_values_dtype_in_probs(self.loc, value)

        var = self.scale * self.scale
284
        return paddle.divide(
285
            paddle.exp(
286 287 288 289 290
                -1.0 * ((value - self.loc) * (value - self.loc)) / (2.0 * var)
            ),
            (math.sqrt(2 * math.pi) * self.scale),
            name=name,
        )
291 292 293 294 295 296 297 298

    def kl_divergence(self, other):
        r"""The KL-divergence between two normal distributions.

        The probability density function (pdf) is

        .. math::

299
            KL\_divergence(\mu_0, \sigma_0; \mu_1, \sigma_1) = 0.5 (ratio^2 + (\frac{diff}{\sigma_1})^2 - 1 - 2 \ln {ratio})
300 301 302

        .. math::

303
            ratio = \frac{\sigma_0}{\sigma_1}
304

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
        .. math::

            diff = \mu_1 - \mu_0

        In the above equation:

        * :math:`loc = \mu_0`: is the mean of current Normal distribution.
        * :math:`scale = \sigma_0`: is the std of current Normal distribution.
        * :math:`loc = \mu_1`: is the mean of other Normal distribution.
        * :math:`scale = \sigma_1`: is the std of other Normal distribution.
        * :math:`ratio`: is the ratio of scales.
        * :math:`diff`: is the difference between means.

        Args:
            other (Normal): instance of Normal.

        Returns:
322
            Tensor, kl-divergence between two normal distributions.The data type is float32.
323 324

        """
J
Jiabin Yang 已提交
325
        if not _non_static_mode():
326 327 328 329
            check_type(other, 'other', Normal, 'kl_divergence')

        name = self.name + '_kl_divergence'
        var_ratio = self.scale / other.scale
330
        var_ratio = var_ratio * var_ratio
331
        t1 = (self.loc - other.loc) / other.scale
332
        t1 = t1 * t1
333
        return paddle.add(
334
            0.5 * var_ratio, 0.5 * (t1 - 1.0 - paddle.log(var_ratio)), name=name
335
        )